Degree Year

2019

Document Type

Thesis - Open Access

Degree Name

Bachelor of Arts

Department

Environmental Studies

Advisor(s)

John E. Petersen

Committee Member(s)

Roger H. Laushman
David H. Benzing

Keywords

Sustainable agriculture, Woody agriculture, Nut agriculture, Perennial agriculture, Carbon sequestration, Agroforestry, Hazelnuts

Abstract

Mitigating and adapting to climate change and transitioning to more sustainable agricultural methods to feed a growing human population are fundamental challenges today. Woody agriculture holds potential for addressing both through food production and carbon sequestration. To help assess this potential, in 2011, Oberlin College planted an experimental orchard made up of 70 hybrid hazelnut trees treated with three levels of fertilization. I asked the questions: How does annual allocation of carbon to different tissues change over time as hybrid hazels mature? How much carbon can this system store, where is it stored, and how does this change over time? How does fertilization affect patterns of carbon allocation and long-term storage? Are genetically diverse trees capable of producing nut crops similar in scale to conventional commodity crops in the Midwest? I documented a general increase in the production of all tissues in all treatments. Soil carbon storage increased from 2011 to 2018. The only significant effect of fertilizer is an increase in the production of woody biomass, suggesting hazelnuts are a low input crop. In 2017, this still maturing orchard produced an estimated 2.1 tonnes/hectare of in-shell nuts compared to typical local soybean yields of 3.4 tonnes/hectare. In addition, by the fall of 2018, the hazel plot had stored 12 tonnes/hectare of woody biomass. Although many challenges, including cost-effective harvest remain, work in this small-scale hazelnut orchard suggests strong potential for woody crops as low input, high productivity systems that concurrently sequester carbon.

Share

COinS