Title

Dipole moment analysis of excited van der Waals vibrational states of ArH35Cl

Abstract

The far-infrared laser electric resonance spectra of the prototypical atom—diatom complex ArH35Cl are analyzed using improved zero-field molecular constants, yielding accurate permanent and transition dipole moments for the three lowest excited van der Waals vibrational states. The constants are obtained from a multistate fit to previous microwave, far-infrared laser electric resonance, and far-infrared tunable laser spectra, as well as new far-infrared measurements of the Sigma -stretch state, which are reported here. The signs of the dipole moments and Coriolis coefficients establish the relative orientations of the HCl subunit in these states. The fit is found to converge only if these signs correspond to the HCl pointing in opposite directions along the a inertial axis in the Sigma -stretch and Sigma -bend states. A weak preference, near the experimental error limit, is found for the Ar—Cl—H average angle in the Pi -bend state to be greater than 90°, contrary to expectation. For the best fit, we obtain the a-axis dipole moment components -0.5413(11) D ( Sigma bend), -0.263 45(29) D ( Pi bend), and 0.6754(36) D ( Sigma -stretch); and the b-axis components 0.365(12) D ( Pi and Sigma -bend) and -0.0465(43) D ( Pi and Sigma stretches), where the signs of the Coriolis coefficients and µa for the Sigma stretch have been arbitrarily fixed positive. For the expected Pi -bend configuration, with the Ar—Cl—H angle less than 90°, the magnitudes along the a axis change only slightly, but the b-axis components become 0.149(12) and -0.1403(64) D for the Pi — Sigma -bend and Pi — Sigma -stretch interactions, respectively.

Publisher

AIP Publishing

Publication Date

9-1-1993

Publication Title

Journal of Chemical Physics

Department

Chemistry and Biochemistry

Document Type

Article

DOI

10.1063/1.465128

Keywords

Van der Waals forces, Excited states, Dipole moments, Vibrational states, Argon complexes, Hydrochloric acid, Chlorine 35, Far infrared radiation, Lasers, Electric resonance, Zero field splitting, Accuracy, Tuning, Laser spectroscopy, Coriolis force, Reorientation

Language

English

Format

text

This document is currently not available here.

Share

COinS