Dipole moment analysis of excited van der Waals vibrational states of ArH35Cl
Abstract
The far-infrared laser electric resonance spectra of the prototypical atom—diatom complex ArH35Cl are analyzed using improved zero-field molecular constants, yielding accurate permanent and transition dipole moments for the three lowest excited van der Waals vibrational states. The constants are obtained from a multistate fit to previous microwave, far-infrared laser electric resonance, and far-infrared tunable laser spectra, as well as new far-infrared measurements of the Sigma -stretch state, which are reported here. The signs of the dipole moments and Coriolis coefficients establish the relative orientations of the HCl subunit in these states. The fit is found to converge only if these signs correspond to the HCl pointing in opposite directions along the a inertial axis in the Sigma -stretch and Sigma -bend states. A weak preference, near the experimental error limit, is found for the Ar—Cl—H average angle in the Pi -bend state to be greater than 90°, contrary to expectation. For the best fit, we obtain the a-axis dipole moment components -0.5413(11) D ( Sigma bend), -0.263 45(29) D ( Pi bend), and 0.6754(36) D ( Sigma -stretch); and the b-axis components 0.365(12) D ( Pi and Sigma -bend) and -0.0465(43) D ( Pi and Sigma stretches), where the signs of the Coriolis coefficients and µa for the Sigma stretch have been arbitrarily fixed positive. For the expected Pi -bend configuration, with the Ar—Cl—H angle less than 90°, the magnitudes along the a axis change only slightly, but the b-axis components become 0.149(12) and -0.1403(64) D for the Pi — Sigma -bend and Pi — Sigma -stretch interactions, respectively.
Repository Citation
Cooksy, A.L., M.J. Elrod, R.J. Saykally, and W. Klemperer. 1993. "Dipole Moment Analysis of Excited Van der Waals Vibrational States of ArH35Cl." Journal of Chemical Physics 99(3200).
Publisher
AIP Publishing
Publication Date
9-1-1993
Publication Title
Journal of Chemical Physics
Department
Chemistry and Biochemistry
Document Type
Article
DOI
https://dx.doi.org/10.1063/1.465128
Keywords
Van der Waals forces, Excited states, Dipole moments, Vibrational states, Argon complexes, Hydrochloric acid, Chlorine 35, Far infrared radiation, Lasers, Electric resonance, Zero field splitting, Accuracy, Tuning, Laser spectroscopy, Coriolis force, Reorientation
Language
English
Format
text