Target Enrichment and Extensive Population Sampling Help Untangle the Recent, Rapid Radiation of Oenothera Sect. Calylophus
Abstract
Oenothera sect. Calylophus is a North American group of 13 recognized taxa in the evening primrose family (Onagraceae) with an evolutionary history that may include independent origins of bee pollination, edaphic endemism, and permanent translocation heterozygosity. Like other groups that radiated relatively recently and rapidly, taxon boundaries within Oenothera sect. Calylophus have remained challenging to circumscribe. In this study, we used target enrichment, flanking noncoding regions, gene tree/species tree methods, tests for gene flow modified for target-enrichment data, and morphometric analysis to reconstruct phylogenetic hypotheses, evaluate current taxon circumscriptions, and examine character evolution in Oenothera sect. Calylophus. Because sect. Calylophus comprises a clade with a relatively restricted geographic range, we were able to extensively sample across the range of geographic, edaphic, and morphological diversity in the group. We found that the combination of exons and flanking noncoding regions led to improved support for species relationships. We reconstructed potential hybrid origins of some accessions and note that if processes such as hybridization are not taken into account, the number of inferred evolutionary transitions may be artificially inflated. We recovered strong evidence for multiple evolutionary origins of bee pollination from ancestral hawkmoth pollination, edaphic specialization on gypsum, and permanent translocation heterozygosity. This study applies newly emerging techniques alongside dense infraspecific sampling and morphological analyses to effectively reconstruct the recalcitrant history of a rapid radiation.
Repository Citation
Cooper, Benjamin J., Michael J. Moore, Norman A. Douglas, et al. 2023. "Target Enrichment and Extensive Population Sampling Help Untangle the Recent, Rapid Radiation of Oenothera Sect. Calylophus." Systematic Biology 72(2): 249-263.
Publisher
Oxford University Press
Publication Date
6-16-2023
Publication Title
Systematic Biology
Department
Biology
Document Type
Article
DOI
https://dx.doi.org/10.1017/qua.2022.44
Keywords
Species tree estimation, Phylogenetic analysis, Hummingbird pollination, Floral specialization, Plant speciation, Gene flow, R-package, Coalescent, Evolution, Diversification
Language
English
Format
text