Combinatorics in the exterior algebra and the Bollobas Two Families Theorem
Abstract
We investigate the combinatorial structure of subspaces of the exterior algebra of a finite-dimensional real vector space, working in parallel with the extremal combinatorics of hypergraphs. Using initial monomials, projections of the underlying vector space onto subspaces, and the interior product, we find analogs of local and global LYM inequalities, the Erdos-Ko-Rado theorem, and the Ahlswede-Khachatrian bound for t-intersecting hypergraphs. Using these tools, we prove a new extension of the Two Families Theorem of Bollobas, giving a weighted bound for subspace configurations satisfying a skew cross-intersection condition. We also verify a recent conjecture of Gerbner, Keszegh, Methuku, Abhishek, Nagy, Patkos, Tompkins and Xiao on pairs of set systems satisfying both an intersection and a cross-intersection condition.
Repository Citation
Scott, Alex, and Elizabeth Wilmer. 2021. "Combinatorics in the exterior algebra and the Bollobas Two Families Theorem." Journal of The London Mathematical Society: Second Series 104(4): 1812-1839.
Publisher
Wiley
Publication Date
11-1-2021
Publication Title
Journal of The London Mathematical Society: Second Series
Department
Mathematics
Document Type
Article
DOI
https://dx.doi.org/10.1112/jlms.12484
Keywords
05d05 (primary), 15A75, 14N20 (secondary)
Language
English
Format
text