Combinatorics in the exterior algebra and the Bollobas Two Families Theorem

Abstract

We investigate the combinatorial structure of subspaces of the exterior algebra of a finite-dimensional real vector space, working in parallel with the extremal combinatorics of hypergraphs. Using initial monomials, projections of the underlying vector space onto subspaces, and the interior product, we find analogs of local and global LYM inequalities, the Erdos-Ko-Rado theorem, and the Ahlswede-Khachatrian bound for t-intersecting hypergraphs. Using these tools, we prove a new extension of the Two Families Theorem of Bollobas, giving a weighted bound for subspace configurations satisfying a skew cross-intersection condition. We also verify a recent conjecture of Gerbner, Keszegh, Methuku, Abhishek, Nagy, Patkos, Tompkins and Xiao on pairs of set systems satisfying both an intersection and a cross-intersection condition.

Publisher

Wiley

Publication Date

11-1-2021

Publication Title

Journal of The London Mathematical Society: Second Series

Department

Mathematics

Document Type

Article

DOI

https://dx.doi.org/10.1112/jlms.12484

Keywords

05d05 (primary), 15A75, 14N20 (secondary)

Language

English

Format

text

Share

COinS