Areas of totally geodesic surfaces of hyperbolic 3-orbifolds
Abstract
The geodesic length spectrum of a complete, finite volume, hyperbolic 3-orbifold M is a fundamental invariant of the topology of M via Mostow-Prasad Rigidity. Motivated by this, the second author and Reid defined a two-dimensional analogue of the geodesic length spectrum given by the multiset of isometry types of totally geodesic, immersed, finite-area surfaces of M called the geometric genus spectrum. They showed that if M is arithmetic and contains a totally geodesic surface, then the geometric genus spectrum of M determines its commensurability class. In this paper we define a coarser invariant called the totally geodesic area set given by the set of areas of surfaces in the geometric genus spectrum. We prove a number of results quantifying the extent to which non-commensurable arithmetic hyperbolic 3-orbifolds can have arbitrarily large overlaps in their totally geodesic area sets.
Repository Citation
Linowitz, Benjamin, D.B. McReynolds, and Nicholas Miller. 2021. "Areas of totally geodesic surfaces of hyperbolic 3-orbifolds." Pure and Applied Mathematics Quarterly 17(1): 1-25.
Publisher
International Press Boston
Publication Date
6-5-2021
Publication Title
Pure and Applied Mathematics Quarterly
Department
Mathematics
Document Type
Article
DOI
https://dx.doi.org/10.4310/PAMQ.2021.v17.n1.a1
Keywords
Hyperbolic orbifolds, Totally geodesic surfaces
Language
English
Format
text