Accurate Computational Model for the Hydration Extent of Atmospherically Relevant Carbonyls on Aqueous Atmospheric Particles

Abstract

The carbonyl hydration equilibria of several atmospherically relevant carbonyl compounds were studied using nuclear magnetic resonance (NMR) spectroscopy and computationally investigated using the MG2MS electronic structure method. The results were used to build an empirically adjusted computational model that resulted in the calculation of free energies of hydration that were accurate to within 1 kcal mol–1. The new model was used to predict the hydration extent of other potentially atmospherically relevant carbonyl compounds for which no experimental data exists. Because the hydration extent of a carbonyl compound dramatically affects its effective volatility and Henry’s law solubility, the more accurate estimates for the extent of carbonyl hydration predicted by this new model will help improve our understanding of which carbonyl compounds are major constituents of aqueous atmospheric particles.

Publisher

American Chemical Society

Publication Date

1-26-2021

Publication Title

ACS Earth and Space Chemistry

Department

Chemistry and Biochemistry

Document Type

Article

DOI

10.1021/acsearthspacechem.0c00322

Keywords

Atmosphere, Aerosol, Carbonyl, Hydration, Equilibrium

Language

English

Format

text

This document is currently not available here.

Share

COinS