Assessing Potential Oligomerization Reaction Mechanisms of Isoprene Epoxydiols on Secondary Organic Aerosol

Abstract

Extensive studies of secondary organic aerosol (SOA) formation have identified isoprene epoxydiol (IEPOX) intermediates as key species in the formation of isoprene-derived SOA. Recent work has suggested that isoprene-derived dimers and oligomers may constitute a significant fraction of SOA, but a mechanism for the formation of such abundant SOA components has yet to be established. The potential for dimer formation from the nucleophilic addition of 2-methyltetrol to trans-β-IEPOX was assessed through a series of model epoxide–nucleophile experiments using nuclear magnetic resonance (NMR) spectroscopy. These experiments helped establish a rigorous understanding of structural, stereochemical, and NMR chemical shift trends, which were used along with nucleophilic strength calculations to interpret the results of the trans-β-IEPOX + 2-methyltetrol reaction and evaluate its relevance in the atmosphere. A preference for less sterically hindered nucleophiles was observed in all model systems. In all addition products, a significant increase in NMR chemical shift was observed directly adjacent to the epoxide–nucleophile linkage, with smaller decreases in chemical shift at all other sites. A partial NMR assignment of a single trans-β-IEPOX + 2-methyltetrol nucleophilic addition product was obtained, but nucleophilic strength calculations suggest that 2-methyltetrol is a poor nucleophile. Therefore, this reaction is unlikely to significantly contribute to dimer and oligomer formation on SOA. Nevertheless, the structural and stereochemical considerations, NMR assignments, and NMR chemical shift trends reported here will prove useful in future attempts to synthesize dimer and oligomer analytical standards.

Publisher

American Chemical Society

Publication Date

1-2-2019

Publication Title

Environmental Science and Technology

Department

Chemistry and Biochemistry

Document Type

Article

DOI

10.1021/acs.est.8b05247

Language

English

Format

text

This document is currently not available here.

Share

COinS