Field measurements of genotype by environment interaction for fitness caused by spontaneous mutations in Arabidopsis thaliana
Abstract
As the ultimate source of genetic diversity, spontaneous mutation is critical to the evolutionary process. The fitness effects of spontaneous mutations are almost always studied under controlled laboratory conditions rather than under the evolutionarily relevant conditions of the field. Of particular interest is the conditionality of new mutations—that is, is a new mutation harmful regardless of the environment in which it is found? In other words, what is the extent of genotype–environment interaction for spontaneous mutations? We studied the fitness effects of 25 generations of accumulated spontaneous mutations in Arabidopsis thaliana in two geographically widely separated field environments, in Michigan and Virginia. At both sites, mean total fitness of mutation accumulation lines exceeded that of the ancestors, contrary to the expected decrease in the mean due to new mutations but in accord with prior work on these MA lines. We observed genotype–environment interactions in the fitness effects of new mutations, such that the effects of mutations in Michigan were a poor predictor of their effects in Virginia and vice versa. In particular, mutational variance for fitness was much larger in Virginia compared to Michigan. This strong genotype–environment interaction would increase the amount of genetic variation maintained by mutation-selection balance.
Repository Citation
Roles, Angela J., Matthew T. Rutter, Ian Dworkin, et al. 2016. "Field measurements of genotype by environment interaction for fitness caused by spontaneous mutations in Arabidopsis thaliana." Evolution 70(5): 1039-1050.
Publisher
Wiley
Publication Date
5-1-2016
Publication Title
Evolution: International Journal of Organic Evolution
Department
Biology
Document Type
Article
DOI
https://dx.doi.org/10.1111/evo.12913
Keywords
Crossing GEI, Mutation accumulation, Mutation-selection balance, Variance GEI
Language
English
Format
text