A Calcium Wave Mediated by Gap Junctions Coordinates a Rhythmic Behavior in C. Elegans
Abstract
Intercellular calcium waves can be observed in adult tissues, but whether they are instructive, permissive, or even required for behavior is predominantly unknown. In the nematode Caenorhabditis elegans, a periodic calcium spike in a pacemaker cell initiates a calcium wave in the intestine 1 and 2. The calcium wave is followed by three muscle contractions that comprise the defecation motor program [1]. Normal wave propagation requires the pannexin gap-junction subunit INX-16 at the interfaces of the intestinal cells. In the absence of this gap-junction subunit, calcium waves are frequently absent. The remaining waves are slow, initiate at abnormal locations, or travel in the opposite direction. Abnormal waves are associated with parallel effects in the first step of the motor program: The contractions of the overlying muscles fail to propagate beyond the pacemaker cell, are slow, initiate in abnormal locations, or are reversed. Moreover, the last two motor steps are predominantly absent. Finally, the absence of this gap-junction subunit also affects the reliability of the pacemaker cell; cycle timing is often irregular. These data demonstrate that pannexin gap junctions propagate calcium waves in the C. elegans intestine. The calcium waves instruct the motor steps and regulate the pacemaker cell's authority and reliability.
Repository Citation
Peters, M. A., T. Teramoto, K. Iwasaki, J. Q. White, et al. 2007. "A Calcium Wave Mediated by Gap Junctions Coordinates a Rhythmic Behavior in C. elegans." Current Biology 17(18): 1601-1608.
Publisher
Elsevier
Publication Date
1-1-2007
Publication Title
Current Biology
Department
Biology
Document Type
Article
DOI
https://dx.doi.org/10.1016/j.cub.2007.08.031
Language
English
Format
text