Textural constraints on the formation of impact spherules: A case study from the Dales Gorge BIF, Paleoproterozoic Hamersley Group of Western Australia
Abstract
Impact ejecta (about 2.5 Gyr old) in the DS4 layer of the Dales Gorge BIF (Hamersley Group, Western Australia) are so well preserved that many original textures such as vesicles and microlites are faithfully preserved. About 65% of the particles in the layer originated as impact ejecta, of which 81% are splash forms. The remaining 19% are angular, but the splash forms and angular particles have the same composition (mainly diagenetic stilpnomelane and K-feldspar) and share a common suite of internal textures. Some particles contain randomly oriented microlites texturally identical to plagioclase in basalts. Most splash forms have rims of inward-growing crystals that may have formed from the melt (perhaps nucleated by impinging dust) or via thermal devitrification. The rims clearly formed in flight because in broken particles (which make up about 13% of the splash forms) they are generally not present on broken surfaces. The origin of the angular particles is uncertain, but they may represent solid ejecta. Given the large sizes and variable shapes of the splash forms, they are probably droplets of impact melt emplaced ballistically. This is largely by analogy to the K-T boundary layer, but DS4 splash forms differ from K-T spherules in important ways suggesting the K-T model is not universal. The occurrence of basaltic ejecta from a large impact highlights its scarcity in the stratigraphic record despite the areal abundance of oceanic crust. The diverse textures formed via in-flight crystallization suggest particle paths in the plume are more complex than is generally appreciated.
Repository Citation
Sweeney, Dawn, and Bruce M. Simonson. 2008. "Textural constraints on the formation of impact spherules: A case study from the Dales Gorge BIF, Paleoproterozoic Hamersley Group of Western Australia." Meteoritics and Planetary Science 43(12): 2073-2087.
Publisher
Wiley
Publication Date
12-1-2008
Publication Title
Meteoritics & Planetary Science
Department
Geology
Document Type
Article
DOI
https://dx.doi.org/10.1111/j.1945-5100.2008.tb00662.x
Keywords
Cretaceous-tertiary boundary, Brockman Iron Formation, Barberton Greenstone Belt, Altered pyroclastic rocks, Major asteroid impact, Meteoritic chondrules, Iridium anomalies, Glass spherules, Lunar spherules, Shocked quartz
Language
English
Format
text