The explicit algebraic autonomy of Artin presentation theory and the Fox Calculus. I
Abstract
Given an Artin presentation r, we use the Fox Calculus to obtain a short, purely algebraic computation, just in function of r, of the second homotopy group of the associated manifold M3(r)M3(r). This allows us to give a Langlands-like formulation (not yet a proof) of the three-dimensional Borel conjecture for closed, orientable 3-manifolds, the latter being a theorem of geometrization theory and implying the Poincaré conjecture.
Repository Citation
Calcut, J.S., and H.E. Winkelnkemper. 2015. "The explicit algebraic autonomy of Artin presentation theory and the Fox Calculus. I." Boletín de la Sociedad Matemática Mexicana: 1-11.
Publisher
Springer Verlag
Publication Date
8-1-2015
Publication Title
Boletín de la Sociedad Matemática Mexicana
Department
Mathematics
Document Type
Article
DOI
https://dx.doi.org/10.1007/s40590-015-0067-5
Keywords
Artin presentation, 3-manifold, Secondary homotopy group, Fox Calculus
Language
English
Format
text