Thermodynamics And Kinetics Of The Hydrolysis Of Atmospherically Relevant Organonitrates And Organosulfates

Abstract

The presence of alcohol, organonitrate, and organosulfate species related to the gaseous precursor isoprene in ambient secondary organic aerosol (SOA) has stimulated investigations of the nature of SOA-phase chemical processing. Recent work has suggested that certain isoprene-derived organonitrates are able to efficiently convert to organosulfates and alcohols on ambient SOA. In order to better understand the structure activity relationships previously observed for the isoprene-derived organonitrates and organosulfates, the hydrolysis reactions of a number of monofunctional and difunctional organonitrates and organosulfates with varying carbon substitution properties were investigated. Nuclear magnetic resonance techniques were used to study the bulk phase aqueous reactions of these organonitrates and organosulfates in order to determine hydrolysis reaction rate and, in some cases, thermodynamics information. Electronic structure calculations were also carried out to determine the enthalpy of hydrolysis for these species, and for the previously studied isoprene-derived species. The results suggest that while organonitrates and organosulfates are thermodynamically unstable with respect to the corresponding alcohols at standard state, only the tertiary organonitrates (and perhaps some tertiary organosulfates) are able to efficiently hydrolyze on SOA timescales and acidities.

Publisher

European Geosciences Union / Copernicus Publications

Publication Date

1-1-2011

Publication Title

Atmospheric Chemistry And Physics

Department

Chemistry and Biochemistry

Document Type

Article

DOI

https://dx.doi.org/10.5194/acp-11-8307-2011

Keywords

Secondary organic aerosol, Substituted ethylene oxides, Particle acidity, Ambient aerosol, Photooxidation, Organosulfates, Ozonolysis, Oxidation

Language

English

Format

text

Share

COinS