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Abstract

Allowing for a reserve price in a dynamic auction with capacity-constrained bidders

changes the equilibrium in an unexpected way. The distribution of winning bids contains

a mass point; several bidder types “bunch”at the reserve price.

JEL CLASSIFICATION: C73, D44
Keywords: Dynamic Auction, Capacity Constraint, Reserve Price

1 Introduction

A frequent observation made by empirical researchers analyzing procurement auctions for road

construction work is that construction firms experience capacity constraints, whereby the cost

to a firm of adding another contract to its roster increases with its existing capacity utilization

(Bajari and Ye, 2003; De Silva et al., 2002, 2003; Jofret-Bonet and Pesendorfer, 2003).1 Since

the cost distribution of the firm that wins the current auction worsens as a result of the capacity

constraint, such firms face an intertemporal tradeoff in their profits: higher profits in the current

period come at the cost of lower profits in future periods. Strategic forward-looking firms realize

that they incur an opportunity cost or option value in the future by winning the current auction.

The behavior of bidders in such auction settings has been theoretically analyzed by Grimm

(2007), Jeitschko and Wolfstetter (2002), Jofret-Bonet and Pesendorfer (2006), and Saini (2009).

∗Tel: +1 (440) 775-8485; fax: (440) 775-6978; E-mail address : viplav.saini@oberlin.edu.
1Here capacity utilization is defined as the ratio of the firm’s outstanding work commitments to its size.

The idea underlying this effect is that since a firm’s capacity tends to stay fixed in the short term, as its work
commitments increase, it must augment its capacity by paying overtime wages, renting additional equipment,
moving scarce equipment around from site to site, and using less productive (perhaps older) equipment, all of
which typically lead to higher unit costs.



The typical structure of equilibrium strategies is one where a bidder’s bid equals the bidder’s

option value plus the amount that it would have bid in a static one-shot auction. Since the option

value is just another markup over cost, bids increase with costs. However, none of the existing

models consider the case where– as is common practice in procurement auctions– the procurer

may impose a reserve price so that bids higher than the reserve price are rejected. Moreover, the

structure of the equilibrium in these models does not allow for a reserve price.2

In this paper, we solve for the equilibrium bidding strategies of n capacity-constrained bidders

in a sequence of two auctions where the procurer imposes a reserve price in the first period

auction. Allowing for a reserve price changes the equilibrium in an unexpected way. We find

that the equilibrium bidding strategies are no longer strictly increasing over the range of costs

for which a bidder wins with a positive probability. More specifically, there exists an interval

of a bidder’s costs over which it always bids the reserve price, thus winning the auction with

positive probability. Therefore, there exists a mass point in the distribution of winning bids at

the reserve price. As usual, we also find a cutoff cost level such that firms with costs higher

than the cutoff choose to drop out of the first auction by bidding some amount above the reserve

price.

While we present our analysis in the context of a procurement auction, our analysis applies

to a more general class of sequential auction models. For instance, an intertemporal linkage

analogous to our model is possible in art auctions. An art collector interested in acquiring a

series of paintings by a particular painter might find that winning one painting increases her

valuation in future auctions for paintings from the same series. Our analysis predicts that if the

auctioneer imposes a reserve price in this setting, several bidder types will “bunch”at the reserve

price. In addition to theorists, this result should also be of interest to researchers interested in

recovering the underlying value distributions of bidders from their observed bid distributions in

dynamic auction markets.

2 A Model with Reserve Prices

A procurer auctions off two identical projects using a sequence of two first-price procurement

auctions. There are n risk-neutral bidders, each of whom wishes to win both contracts. The

costs of the bidders are independent private values. In the first auction, all bidders draw their

cost for the project from the interval [c, c̄] according to a continuously differentiable probability

distribution F (c), with density f(c) that is bounded away from 0 over the support. The auction-

eer imposes a reserve price of R in the first auction.3 In each round the bidders simultaneously

2Suppose there are two sequential auctions. Starting from symmetry, in the absence of a reserve prices, there is
only one possible configuration of asymmetry in the second auction: someone wins the first auction and everyone
else loses. However, in the presence of reserve prices, it is also possible that no one wins the first auction. This
makes the bidding decision in the first auction more complicated than simply adding the option value to static
bids.

3The case where the procurer imposes a reserve price in the second auction as well is straightforward, since
then the second auction becomes a simple static auction with a reserve price.
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submit sealed bids, and the contract is awarded to the lowest bidder. If there is more than one

bidder at the lowest bid (which happens in equilibrium at R with positive probability), then the

procurer awards the contract to each bidder with equal probability. A bidder can choose to drop

out of the first auction by bidding an amount OUT > R.

Due to being capacity-constrained, the winning bidder experiences a first order stochastic

dominance shift in its cost distribution on winning the first auction. As a result, the second

auction becomes a one-shot asymmetric auction with one ‘weak,’ and n − 1 identical ‘strong’

bidders. Standard results from the theory of static asymmetric auctions allow us to make the

following abstraction regarding the profits in the second period auction (Maskin and Riley, 2000):

if there is a winner in the first auction, then it gets a payoff of πw in the second auction, and the

remaining n− 1 bidders get a payoff of πl in the second auction, where πw < πl. If no one wins

in the first period auction, all bidders get an expected payoff of π0 in the second auction, where

πw < π0 < πl. The idea is that the winning bidder’s payoff in the second auction πw, is lower

than what its payoff would have been (π0) if no one had won the first auction. For a similar

reason, the second period payoff of a losing bidder πl, is greater than π0. Making this abstraction

allows us to avoid the needless complication of describing the straightforward bidding strategies

and profit relationships in the second period auction.

We consider the case where the reserve price is binding, that is, R−(πl−πw) < c̄. Otherwise,

the reserve price does not affect behavior in the auction. We will explain the implication of this

assumption below.

3 Equilibrium

Our main result is solving for a Perfect Bayesian Nash Equilibrium (PBNE) of this auction.

While the formal statement of the result is summarized in Proposition 1, we now describe the

structure of the equilibrium in words. Let cminj 6=i denote the lowest cost draw among the rivals of

bidder i in the first auction. The equilibrium bidding strategy in (1) can be described in three

parts.

1. Over the cost interval [c,R−(πl−πw)], the players use monotonically increasing strategies.

Each cost type’s bid is the sum of two components. The first component is the expected

minimum of R− (πl−πw) and cminj 6=i conditional on c
min
j 6=i being higher than the bidder’s cost

type. This is a standard static bid. The second component (πl − πw) is the option value

of the bidder in the case where it is the winner in the first auction.

2. Interestingly, all cost types in the interval [R−(πl−πw), c∗] bid the reserve price R; here c∗

is as defined in Proposition 1. Thus, there is a mass point in the distribution of equilibrium

bids at R. Another interesting feature of bidding over this cost range is that the bidders

bid R in spite of the fact that by doing so they will not fully recover c + (πl − πw), their

cost draw plus the option value contingent on winning. This is so because with positive
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probability, the profit of the losing bidder is π0 instead of πl. Since π0 < πl, the expected

payoff upon losing the auction is lower.

3. All cost types higher than c∗ drop out of the first auction by bidding OUT > R.

Proposition 1 Each bidder bidding according to the following symmetric bidding strategy in the
first auction constitutes a PBNE of the two-period auction.

b(c) =


E[ min{R− (πl − πw), cminj 6=i}|c < cminj 6=i ] + (πl − πw) for c ∈ [c,R− (πl − πw)]

R for c ∈ [R− (πl − πw), c∗]

OUT for c ∈ [c∗, c̄].

(1)

where c∗ solves

(R−c∗−(πl−πw))
n−1∑
k=0

1

n− kC
n−1
k [1−F (c∗)]k[F (c∗)−F (R−(πl−πw))]n−1−k = (π0−πl)(1−F (c∗))n−1.

Proof. We will show that the bidding strategy in (1) is optimal for a bidder given that the other
bidders are playing the same strategy.

We will first write down an expression for a bidder’s profits upon following this strategy.

Since all of them bid R, the winning probability of cost types in the interval [R− (πl − πw), c∗]

is given by:

Pwin(R; c∗) =
n−1∑
k=0

1

n− kC
n−1
k [1− F (c∗)]k[F (c∗)− F (R− (πl − πw))]n−1−k.

Here, 1
n−kC

n−1
k [1−F (c∗)]k[F (c∗)−F (R− (πl−πw))]n−1−k is the probability that k of the other

n− 1 bidders drop out of the first auction, and the remaining n− k − 1 bidders draw a cost in

the interval [R − (πl − πw), c∗], causing them to bid R, which causes the procurer to award the

project to each of the n − k bidders, who bid R, with probability 1
n−k (tie-breaks). Given the

strategies in (1), the expected profit of a bidder that gets a cost draw of c, and bids b(c), is given

by:

Π(b(c); c) =


(b(c)− c+ πw)(1− F (c))n−1 + πl(1− (1− F (c))n−1) if b(c) < R

(R− c+ πw)Pwin(R; c∗) + πl(1− Pwin(R; c∗)) if b(c) = R

π0(1− F (c∗))n−1 + πl(1− (1− F (c∗))n−1) if b(c) = OUT > R.

(2)

If the bidder chooses to participate in the first auction and it bids less than R, then (1−F (c))n−1

is the probability that the bidder wins the auction. If the bidder chooses to participate in the

first auction with a bid of R, then Pwin(R; c∗) is the probability that it wins the auction. If the

bidder drops out of the auction, then (1 − F (c∗))n−1 is the probability that every other bidder

drops out as well, in which case the bidder gets a profit of π0. The expression 1− (1−F (c∗))n−1

represents the probability that at least one of the rival bidders stays in the auction, in which
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case the bidder’s payoff is πl. The expression in (2) simplifies to:

Π(b(c); c) =


(b(c)− c− (πl − πw))(1− F (c))n−1 + πl if b(c) < R

(R− c− (πl − πw))Pwin(R; c∗) + πl if b(c) = R

(π0 − πl)(1− F (c∗))n−1 + πl if b(c) = OUT > R.

(3)

We now show that c∗ exists and lies in (R − (πl − πw), c). At a given cost draw, a bidder

makes the stay-in-or-drop-out decision by comparing the profits from staying in, and bidding an

amount less than or equal to R, to the profits from dropping out. The maximum cost at which a

player will make a positive payoff by placing a winning bid in the first auction is R− (πl − πw),

where it bids R. Note that we assumed that R − (πl − πw) < c̄. Otherwise, the reserve price

is not binding. Now since (π0 − πl)(1 − F (c∗))n−1 < 0, then for some cost draws higher than

R − (πl − πw), it might make sense for the bidder to stay in and place a bid of R in the first

auction, even when doing so means that R − c − (πl − πw) < 0. That is, even when it will not

entirely recover its cost plus option value conditional on winning. The bidder should drop out

of the first auction only for cost draws higher than c∗, which is defined as the cost level at which

the bidder is indifferent between staying in, and bidding R, and dropping out. Thus, c∗ solves:

(R− c∗ − (πl − πw))Pwin(R; c∗) = (π0 − πl)(1− F (c∗))n−1.

In order to see that c∗ exists, define the following functions for c ∈ [R− (πl − πw), c]:

A(c) ≡ (R− c− (πl − πw))Pwin(R; c),

B(c) ≡ (π0 − πl)(1− F (c))n−1.

By assumption, this interval is non-empty. Moreover, the following properties of the functions

can be easily verified: A(R−(πl−πw)) = 0; A(c) < 0; A(c), A′(c) < 0;4 and B(R−(πl−πw)) < 0;

B(c) = 0; B(c), B′(c) > 0. Since A(·) and B(·) are continuous functions, these properties imply
that the two functions intersect in the interior of the interval [R− (πl − πw), c]. This proves the

existence of c∗. We now know that c∗ ∈ (R − (πl − πw), c), and that c Q c∗ ↔ A(c) R B(c) for

c ∈ [R− (πl − πw), c].

We now show that the strategy in (1) is optimal given that the other n−1 players are playing

this strategy.

First we will consider the case where c ∈ [c,R − (πl − πw)]. We will begin by showing that

the problem of each cost type in this range is identical to the problem of each cost type over the

same range in a special one-shot game. Next, we will write down this player’s optimal strategy in

the one-shot game, which must then also be optimal in our game. The optimal bidding strategy

in the one-shot game will turn out to be the same as the one depicted for this cost range in
4Note that A′(c) < 0 because an increase in c∗ means that the rivals of a bidder are less likely to drop out and

more likely to compete with the bidder at the reserve price, thus lowering its profits upon staying in and bidding
R.
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(1). So for the sake of our argument, consider a special one-shot auction game where each of n

bidders gets a cost draw of c+ (πl−πw) where c is distributed over [c, c̄] according to F (c). The

auctioneer imposes a reserve price of R < c̄+ πl − πw. Also, it pays each bidder the amount πl
irrespective of the auction’s outcome. If a bidder with cost c submits the lowest bid bmin, it wins

the auction and gets an additional payoff of bmin − c − (πl − πw). Now suppose each bidder is

playing the strategy from Proposition 1 in this one-shot game. Then a bidder’s expected profits

in the one-shot game are:

π(b(c); c) =

{
(b(c)− c− (πl − πw))(1− F (c))n−1 + πl for b(c) ≤ R
πl for b(c) = OUT > R.

Notice that over the cost range [c,R− (πl − πw)], the profits in the one-shot game are the same

as the profits in our model. While the winning probability at a cost of R − (πl − πw), where

bidders in both models bid R, is lower in our model,5 the profits at R − (πl − πw) equal πl in

both models. Using standard auction theory arguments, made in the appendix, it can be shown

that the symmetric equilibrium strategy in the one-shot game is:

b̂(c) =

{
E[min{R− (πl − πw), cminj 6=i}|c < cminj 6=i ] + (πl − πw) for c ∈ [c,R− (πl − πw)]

OUT for c ∈ [R− (πl − πw), c̄].
(4)

Note that the profits from choosing OUT in our model, (π0−πl)(1−F (c∗))n−1+πl, are lower than

the profits from choosing OUT in the one-shot game (πl). Thus, any cost type in [c,R−(πl−πw)]

that finds it optimal to stay in and bid b(c) in the one-shot game will find it optimal to stay in and

bid b(c) in our model as well. Thus, the bidding behavior over the cost range [c,R − (πl − πw)]

in our model is identical to the bidding behavior in the one-shot model given in (4) over the

same cost range. For the remainder of our argument, we do not need to use this one-shot game

example.

Now consider the case where c ∈ [R − (πl − πw), c∗]. Since A(c) ≥ B(c) over this range, a

cost type in this range should not choose OUT , since it can have a higher payoff by bidding R.

Note that this type would not want to bid less than R because the highest type in the interval

[c,R− (πl − πw)] finds it profit-maximizing to bid R. Then, a higher type in [R− (πl − πw), c∗]

can not find it profit-maximizing to bid less than R.

Finally, consider the case where c ∈ [c∗, c]. Since A(c) ≤ B(c) over this range, a cost type

in this range will find it profitable to drop out of the first auction by bidding OUT rather than

staying in and bidding R. While we have shown that these types will not bid R, the argument

for why they will not bid less than R is the same as in the previous paragraph.

Thus, we have shown that for every cost draw in the interval [c, c̄], the bidding stratgey in

Proposition 1 is optimal for a bidder when the other bidders are using the same strategy.

5Note that [1−F (R−(πl−πw))]n−1 >
∑n−1

k=0
1

n−kC
n−1
k [1−F (c∗)]k[F (c∗)−F (R−(πl−πw))]n−1−k. Intuitively,

in the one-shot example, only cost types equal to R − (πl − πw) bid R, while in our model, all cost types in
[R− (πl − πw), c

∗] bid R, thereby intensifying competition at the reserve price bids.

6



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Uniform Distribution
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3.1 Example: Uniform Distribution

We now illustrate the equilibrium bidding strategies in the case with n = 2 bidders where

each bidder’s cost is uniformly distributed over [0, 1]. Suppose R = 0.8, πl − πw = 0.1, and

π0 − πl = −0.1. Also, a player can drop out of the first auction by bidding OUT = 0.9. For

these parameter values, we calculated c∗ = 0.7838. From Proposition 1, the bidding strategy in

the first auction is:

b(c) =


c+

∫ 0.7
c [1−c]dx
1−c + 0.1 for c ∈ [c, 0.7]

0.8 for c ∈ [0.7, 0.7838]

OUT for c ∈ [0.7838, 1].

This strategy is depicted in Figure 1. The bids increase with cost till c = 0.7, after which the

bidder simply bids the reserve price as long as its cost is less than c∗ = 0.7838. For higher

cost draws, the bidder drops out of the first auction. The fact that cost types in the interval

[0.7, 0.7838] bunch at R will produce a discontinuous jump in the cdf of winning bids at R.
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4 Concluding Remarks

Motivated by markets in which the same set of bidders repeatedly competes over a series of

dynamically-linked auctions, this paper asks what the effect of imposing reserve prices on bidder

behavior is in such settings. While bids monotonically increase with costs when the reserve price

is non-binding, with binding reserve prices the equilibrium changes to one where several cost

types submit the reserve price. Therefore, the distribution of winning bids contains a mass point

at the reserve price. In addition to contributing to a theoretical understanding of bidder behavior

in dynamic auction markets, this finding should also be useful for empirical work that seeks to

infer the underlying values of bidders from their observed bids.
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Appendix

The special one-shot game described in the proof of Proposition 1 is strategically equivalent to

the following one-shot game. Consider an auction where each of n bidders draws its cost from

the interval [c, c̄] according to the distribution F (c). The procurer imposes a reserve price of R.

We show that the equilibrium bidding strategy in this auction is given by:

β(c) = E[min{R, cminj 6=i}|c < cminj 6=i ], (A.1)

= c+

∫ R
c [1− F (x)]n−1dx

[1− F (c)]n−1
,

for c ∈ [c,R], and β(c) = OUT for c ∈ (R, c̄]. We follow the exposition in Krishna (2002) for a

regular auction. For cost types c ∈ [R, c̄], winning leads to a negative payoff, since the maximum

payment is R, while choosing OUT leads to a payoff of 0. Therefore, choosing OUT is in fact

a dominant strategy for them. We now show that for cost types c ∈ [c,R], the strategy (A.1)

is a best response for a player when its rivals are using the same strategy. Denote by Π(z; c)

the profit of a player when its cost is c, but it bids as if its cost is z 6= x. We will show that

Π(z; c)−Π(c; c) < 0 for z 6= x.

Π(z; c) = [1− F (z)]n−1(β(z)− c)

= [1− F (z)]n−1

(
z +

∫ R
z [1− F (x)]n−1dx

[1− F (z)]n−1
− c
)

= [1− F (z)]n−1(z − c) +

∫ R

z
[1− F (x)]n−1dx.

Π(c; c) = [1− F (c)]n−1(β(c)− c)

=

∫ R

c
[1− F (x)]n−1dx.

Π(z; c)−Π(c; c) = [1− F (z)]n−1(z − c)−
∫ z

c
[1− F (x)]n−1dx < 0.
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