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Most psychological models of perceptual decision making are of the accumulation-to-
threshold variety. The neural basis of accumulation in parietal and prefrontal cortex is
therefore a topic of great interest in neuroscience. In contrast, threshold mechanisms
have received less attention, and their neural basis has usually been sought in subcorti-
cal structures. Here I analyze a model of a decision threshold that can be implemented
in the same cortical areas as evidence accumulators, and whose behavior bears on two
open questions in decision neuroscience: (1) When ramping activity is observed in a brain
region during decision making, does it reflect evidence accumulation? (2) Are changes in
speed-accuracy tradeoffs and response biases more likely to be achieved by changes in
thresholds, or in accumulation rates and starting points? The analysis suggests that task-
modulated ramping activity, by itself, is weak evidence that a brain area mediates evidence
accumulation as opposed to threshold readout; and that signs of modulated accumulation
are as likely to indicate threshold adaptation as adaptation of starting points and accumu-
lation rates. These conclusions imply that how thresholds are modeled can dramatically
impact accumulator-based interpretations of this data.
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1. THE THRESHOLD CONCEPT IN ABSTRACT
DECISION-MAKING MODELS

Simple perceptual decision making is typically thought to involve
some kind of weighing of evidence. According to this story, sen-
sory data is repeatedly sampled in order to build confidence that
one decision option is correct, and the others incorrect.

Accumulating evidence is only half the battle when making a
decision, however. The other half requires that a subject have a
physically implemented policy governing the termination of evi-
dence collection and the transition into action. Indeed, many of
the most important results in decision theory consist of carefully
designed stopping rules that terminate decisions. These policies
result in hypothesis-testing procedures that are optimal or near-
optimal according to some objective function. Psychological mod-
elers are therefore naturally guided to focus on decision rules as
an important source of performance adaptation in humans and
other animals.

A common view in neuroscience, in contrast, is premised on the
routine finding that firing rates of suspected accumulator-neurons
reach a fixed threshold near the time of a behavioral response,
suggesting that the critical level that causes responding or decision
commitment (in monkeys at least) is close to the peak firing rate.
Performance by these animals (their response times and accuracy)
is therefore thought to be adapted by changing the rate, starting
point, or starting time of evidence accumulation.

Once constraints on how networks of neurons can compute
are taken into consideration, pressing theoretical questions arise
for both views of performance adaptation. First, how can accu-
mulating evidence produce a behavioral response when it exceeds

a critical level by some small value, but not when it is just slightly
below that level? Further, once a model of a threshold mechanism
is proposed that answers this question, how can physiological signs
of its operation be discriminated from signs of evidence accumu-
lation? Finally, is behavioral performance adapted by modulating
the activity of accumulators, thresholds, or both?

Here I formally define some basic, unavoidable physical
assumptions about decision-threshold mechanisms, and I con-
sider how these must affect interpretations of neural data. I argue
that firing-rate data commonly thought to be observations of
accumulators in action may instead be observations of thresh-
old mechanisms, and that mistaken identities of this sort may
be the source of an apparent conflict between findings in neuro-
science (fixed thresholds) and findings in psychology (strategically
controlled thresholds).

I show that this conflict eases if neural accumulators have
sometimes been confused with neural threshold mechanisms. As
I demonstrate with a simple decision-making model, the final-
firing-rate-premise of the fixed-threshold account actually implies
very little, if we allow for threshold mechanisms to send positive
feedback to accumulators – a concept consistent with anatom-
ical patterns of connectivity in parietal and prefrontal cortex.
With this addition to an otherwise purely feedforward model,
threshold mechanisms can serve to lift accumulators to a com-
mon final level of activation near the time of responding, even
when different levels actually trigger decision commitment under
different task conditions. These theoretical considerations suggest
that physiological data is frequently ambiguous regarding the locus
of decision-circuit control.
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2. IMPLICATIONS FOR MAPPING DECISION-MAKING
PROCESSES ONTO BRAIN ACTIVITY

In this section, I present a generic model of a neural threshold
mechanism inspired by the individual neuron’s action potential
threshold. I then discuss what its implementation at the cortical
population level would predict in terms of a firing-rate profile dur-
ing threshold-crossing (while acknowledging that this threshold
model could in fact be implemented subcortically). If the model is
correct, these predictions imply that some current interpretations
of single-unit recordings from monkeys performing perceptual
decision-making and visual search tasks may need to be revised.

2.1. NEURAL IMPLEMENTATIONS OF ABSTRACT DECISION-MAKING
MODELS REQUIRE PHYSICAL THRESHOLD MECHANISMS

Decision thresholds traditionally play an important role in psy-
chology in explaining one of the most salient features of human
perceptual categorization. This is that spending more time observ-
ing a stimulus tends to increase decision accuracy regarding which
category the stimulus belongs to. Such speed-accuracy tradeoffs
are easily explained as a process of accumulation to threshold:
to make a decision, evidence must accumulate to a point that a
decision threshold is crossed and an action is triggered. Higher
thresholds imply greater accuracy (less chance of crossing the
wrong threshold), but longer response times (the decision variable
has a greater distance to travel). Furthermore, just as incentives are
hypothesized to change category boundaries in signal detection
theory (Green and Swets, 1966), top-down control strategies have
been hypothesized to adapt decision thresholds in response-time
tasks in order to modify speed-accuracy tradeoff functions (see
Luce, 1986)1.

This basic scheme of accumulation-to-threshold is imple-
mented by most decision models, although even simpler, non-
evidence-accumulating models can account for speed-accuracy
tradeoffs (e.g., the “urgency-gating” model of Cisek et al., 2009,
which responds whenever an unusually favorable sample of evi-
dence arrives and weights evidence by a ramping urgency signal;
or purely ballistic models that sample evidence only at one instant,
such as the ballistic accumulator model of Brown and Heathcote,
2005, and the LATER model of saccade response times, Reddi and
Carpenter, 2000). In addition, recent accumulation-based mod-
eling approaches attempt to account for physiological evidence
of fixed thresholds by adapting baseline levels of activity in com-
peting response channels. Adapting baseline activity results in an
effective change of threshold height without any change in the level
of channel-activation necessary to make a response (Bogacz et al.,
2010b; see also van Ravenzwaaij et al., 2011). This approach is simi-
lar but not identical to decision-threshold adaptation. Activating a
response channel in these models must initiate a decision process
based on accumulated noise that will ultimately culminate in a
decision, even if no stimulus is present. Actual decision-threshold
adaptation, in contrast, can be achieved without producing any
response until a stimulus is present, allowing for top-down control
to be exerted over arbitrarily long delays prior to stimulus onset.

1Note that the use of the term “threshold” here is equivalent to that term’s use in
neurophysiology. It is distinct from its common use in psychology as the name of
an arbitrary accuracy criterion for characterizing perceptual acuity.

In all cases, however, decisions must not be initiated before
some critical level of evidence or some other quantity either
accumulates or is momentarily sampled. Before committing to
a particular decision – a period that may theoretically last an arbi-
trarily long time – the motor system is often assumed to receive
no input from the evidence-weighing process. Thus a physical
barrier must be assumed, which, once exceeded, leads inexorably
to a particular outcome, but below which no response is possi-
ble. What sort of non-linear transformation of the net evidence
or the “urgency to respond” can meet this specification and be
implemented physically?

The simplest answer is: the same sort of transformation imple-
mented by threshold-crossing detectors in human-engineered sys-
tems, namely switches. Physically implemented switches nearly
always have two, related, dynamical properties – bistability and
hysteresis – that define them specifically to be latches in engineer-
ing terminology. Bistability means that these systems are attracted
to one of two stable states that are separated by an unstable equilib-
rium point; hysteresis means that the response of such a system to
a given input depends heavily on its past output (loosely speaking,
hysteresis means“stickiness”and involves a basic form of persisting
memory of the past; in contrast, linear systems are non-sticky and
respond to constant inputs in such a way that the system’s initial
conditions are forgotten at an exponential rate over time). Energy
functions can be defined for such systems, consisting of two wells
separated by a hump (see Figure 1). Any such system can then
be accurately visualized as a particle bouncing around inside one
or the other well under the influence of gravity, and occasion-
ally escaping over the hump into the other well. Each “escape” is
analogous to the flipping of the switch. The importance of the
double-well design is that it reduces chatter, or bouncing of the
switch between states as a result of noise (it“latches”into one or the
other state), imposing a repulsive force away from the undefined
region between ON and OFF.

It is important to note that such devices do not implement
a simple step-function applied to their inputs, as suggested by a

Decision 
preparation

Decision 
commitment

FIGURE 1 | Double-well energy potential function, with system
trapped in left well. Transitions to the right well (“escapes”) maybe
considered transitions from an OFF state to an ON state, or a
decision-preparation to a decision-committed state.
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common, simplified representation of switching behavior in the
form of a step-function (or “Heaviside function”). Instead, their
input-output relationships are not strictly functions at all: a given
input level maps to more than one output level. Step-functions are
nonetheless frequently used to formalize the ideal of an abstract
decision threshold. This idealization is frequently very useful in
both psychology and neuroscience, but it has the potential to bias
the interpretation of various kinds of physiological recordings,
since these are usually easier to map onto the gradual accumula-
tion of evidence than onto the sudden, quantum leap represented
by a step-function.

An analogous problem holds in the design of digital electron-
ics: logic engineers who use idealized switch representations must
factor in lower limits on the switching-speed of their basic com-
ponents in their circuit designs. If they violate these constraints on
assumed switching speeds, then their assumptions that a particu-
lar component will output a 1 or 0 at a given time may in turn be
violated (the output may not yet have changed from its previous
value, or it may be in an indeterminate level representing neither
1 nor 0). The end result is unpredictable circuit behavior (Hayes,
1993). This analogy suggests that when it comes to interpreting,
for example, single-unit firing-rate data in decision making, we
may be in the position of the physicists and engineers who design
the transistors, rather than those who compose switching devices
into large circuits. Using idealized models of switching at the sub-
digital scale leads to substantial errors of prediction in electronics;
making the same sort of mistake in psychology and neuroscience
may lead to substantial errors of interpretation.

2.2. THE AXONAL MEMBRANE IMPLEMENTS A PHYSICAL
THRESHOLD

Another constructive analogy for modeling decision-making cir-
cuits comes from a well known physical threshold device even
more familiar to neuroscientists: the axonal membrane of an indi-
vidual neuron. In central nervous system neurons, a high density
of voltage-gated sodium-channels in the axon imparts bistability
to the voltage across its membrane. This channel-density is typi-
cally highest at the axon hillock, where the axon leaves the soma,
so that most action potentials are generated in this area, known
as the “trigger zone” (Kandel et al., 2000). In contrast, the soma
itself typically has a much higher (possibly non-existent) action
potential threshold, and is classically thought to function more as
a spatiotemporal integrator than as a switch.

According to the deterministic Hodgkin-Huxley equations,
raising the membrane to nearly its threshold potential and then
shutting off input current leads to a return to the negative rest-
ing potential – the axon-potential’s low stable value – without an
action potential. Physically, this corresponds to a failure to trig-
ger a chain reaction of voltage-gated sodium-channel openings.
Injecting a current that is slightly larger instead triggers this chain
reaction with high probability, producing an action potential that
is stereotyped in magnitude and duration under fixed conditions
of temperature and chemical concentration. During the action
potential, the membrane traverses a no-man’s-land of positive
voltages, reaches its stereotyped peak – its high stable value –
and then resets to its low stable value as voltage-gated potassium
channels open up. These are hallmarks of a double-well system.

The primary player in this all-or-none process is a voltage-
amplifying mechanism with strong positive feedback – the voltage-
gated sodium-channel population – which ranges between two
stable, attracting values: all-open (1), and all-closed (0). A time-
delayed version of these activation dynamics is then employed by a
voltage-gated potassium-channel population to produce a shutoff
switch. A central claim of this paper is that these roles may easily be
played by any neural population conforming to certain assump-
tions, and that some cortical populations may indeed conform
to them.

This important feature of individual membrane potential
dynamics does more than provide a useful analogy for modeling
decision-making circuits. It suggests that a simple mathematical
model may be usefully employed to describe both the dynamics of
the individual neuron and the dynamics of interconnected neural
populations. The generation of an individual action potential in
a neuron, after all, qualitatively fits the description of a typical
decision process: sub-threshold, leaky integration of post-synaptic
potentials in a neural soma is analogous to evidence accumulation
in a decision circuit; action potential generation in the trigger zone
is analogous to crossing a decision threshold.

The other major claim of this paper regards interpretation
of behavioral and physiological data collected during decision
making. Many researchers (e.g., Shadlen and Newsome, 2001;
Purcell et al., 2010) describe their findings in ways that suggest
they are observing the population-analog of a neuron’s somatic
membrane potential, when a better analogy in some cases may
be that they are observing the analog of an axon’s membrane
potential.

2.3. “TURTLES ALL THE WAY DOWN”: NEURONS AND NEURAL
POPULATIONS AS THRESHOLDED LEAKY INTEGRATORS

Since so much inspiration for the present model of decision-
making circuits comes from the individual neuron, I now show
briefly how the dynamics of the individual neuron can, in prin-
ciple, be reproduced by whole populations. Figure 2 depicts
how a population of leaky-integrate-and-fire (LIF) neurons can
collectively implement a single leaky integrator whose out-
put is the population’s spike train. Suppose that many neu-
rons project to a given receiving population and have uncor-
related spike times; that the resulting post-synaptic potentials
are small due to weak synaptic connections; and that excita-
tion is balanced by some level of inhibition. In that case, each
unit in the receiving population can be modeled as a leaky
integrator (Figure 3), whose sub-threshold membrane potential
approaches some asymptotic level (see Smith, 2010). A similar
model of sub-threshold membrane dynamics as a drift-diffusion
process (without leak) was given in Gerstein and Mandelbrot
(1964).

If the receiving population is large enough, then the receiving
population’s spiking output represents what the population’s aver-
age membrane potential would be if its units lacked voltage-gated
sodium-channels and therefore generated no action potentials. An
asymptotic potential would be reached, with the level depending
on the input strength and the leak. (Action potentials naturally
tend to erase the record of previous potential levels in each unit
after resetting.)
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FIGURE 2 |The multiple spatial-scale modeling approach. (A) For
simplicity, an individual neuron is modeled as a Poisson spike generator, with
rate parameter determined by the leaky integral of weighted inputs from
other units. (B) The population model, which allows for chaining a leaky

integrator and a latch. (C) Correspondence of each circuit component to parts
of a more classical model of a neuron. The axon hillock corresponds to a latch;
the soma corresponds to a leaky integrator; shading indicates density of
voltage-gated sodium-channels.

If this asymptotic level is below the action potential thresh-
old, however, then the inter-spike times of the model will
be largely memoryless. The hazard rate of a new spike is

almost flat, meaning that if a spike has not occurred at
some time t following the previous spike, then it has a con-
stant probability of occurring in the next small time window,
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FIGURE 3 | Demonstration that a thresholded Ornstein-Uhlenbeck
(OU) process, or leaky integrator, can give approximately
exponential inter-spike times if the asymptotic level of the
integrator is below threshold. (A) Close-up view of an OU process
rising to a threshold, then resetting and rising again. (B) A longer
time-course of the same process; inter-spike times are the times
between resets (downward jumps). (C) Histogram of threshold-OU
model’s inter-spike intervals. The main deviation from true Poisson

statistics is the lack of inter-spike intervals below a 2 ms limit – in other
words, a refractory period. (D) Distributions of trajectories relative to
spike time, showing that aside from the brief refractory period when the
system has not reached asymptote (on average), the model is essentially
a white noise process positioned just under the action potential
threshold, leading to memoryless inter-spike times. The rate of those
spikes depends on the distance between the threshold and the
sub-threshold asymptote (Gardiner, 2004).

for all t > 0. This occurs because threshold-crossings will be
due only to momentary noise. Formally, this is once again
a problem of escape from an energy well. Note, here, how-
ever, that an idealized step-function threshold is employed for
its simplicity. For the purpose of modeling population activ-
ity over the course of a perceptual decision as an emergent
property of collective spiking, the assumption here is that
the biophysical details of action potential generation make no
difference.

The first-passage time distribution of this system would be
approximately exponential (Gardiner, 2004), deviating from the
exponential mainly by lacking a high probability of very short
inter-spike times: the resetting of the membrane to its resting
potential, followed by increase toward asymptote, must produce a
refractory period that would prevent truly exponential inter-spike
time distributions (see Figure 3C). The model’s average inter-
spike interval is an exponential function of the distance between
the firing threshold and the asymptotic average potential (Gar-
diner, 2004): stronger inputs to a unit lead to a higher asymptote

and higher firing rate. If inputs lift the asymptote above the firing
threshold, the model breaks down, and inter-spike time distribu-
tions approach the Wald distribution (Gerstein and Mandelbrot,
1964).

Thus we can recreate the dynamics of the individual neuron
at the population level by building a circuit consisting of a leaky
integrator population feeding into a switch population (see the
mapping from Figures 2B,C).

2.4. THE FORMAL MODEL OF POPULATION ACTIVITY
The model is based on the assumptions outlined above and in more
detail in Simen and Cohen (2009); Simen et al. (2011b), most of
which are common in neural network models of decision making.
It is assumed that neural population activity (firing rate) can be
represented approximately as a non-homogeneous Poisson spike
train (equation 1). Its rate parameter λ is governed by an ordinary
differential equation with a leak term and a sigmoidal activation
function f. The input I to the activation function is a shot-noise
process, equal to the weighted sum of input spikes received from
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other populations, convolved with an exponential decay term (see
Figure 2A):

Poisson rate λ(t ) = f

(∫ t

−inf
e−s/τ · I (s) · ds

)

with Ii(t ) =
∑

j

wij · δ
(
t − sj

)
,

and f (y) = 1

1 + exp
(
−αy + β

)

(1)

Here, wij = connection strength between input j and unit i,
sj = input spike time, δ = Dirac delta function.

The resulting population model approximates a leaky integra-
tor, or stable Ornstein-Uhlenbeck (OU) process x(t ) (defined by
equation (2)), as long as the input I (t ) is positive, and as long
as inputs remain in the linear region of the sigmoidal activation
function f:

τ · dxi =
(
−xi + f (Ii)

)
· dt + c · dWi ,

Ii =
∑

j

wij xj . (2)

Unlike a true OU process, when the population’s net input I is
negative, its output goes to 0, but not below it.

For readers not familiar with stochastic differential equations,
the following discrete time approximation to equation (2) may be
easier to understand:

τ ·xi (t + &t ) = xi (t )+
[
−xi (t ) + f (Ii (t ))

]
·&t + c

√
&t ·N (0, 1).

(3)

Here, a normal random variable is added to the deterministic sys-
tem at each time step, with magnitude weighted by the square root
of the time step size. Equation (3) also defines the “Euler method”
by which simulations of the system in equation (2) are carried out
(Gardiner, 2004).

When recurrent self-excitation, k ≡ wii, is included in the input
term I, the population’s intrinsic leak parameter can be reduced or,
at a higher level of precisely tuned positive feedback, completely
canceled (Seung, 1996). Exact cancelation gives rise to perfect
(leakless) temporal integration, which is critical for implementing
decision-making algorithms that are optimal in certain contexts
(Gold and Shadlen, 2002). Such exact cancelation requires more
precise tuning for larger leak terms (Simen et al., 2011a). At still
higher levels of positive feedback, bistability results (see Figure 4).
The likely consequence for an explicit, purely excitatory, spiking
LIF model of populations in the case of stronger self-excitation
would be synchronization of spiking, since stronger excitatory
connectivity in a population would make any given spike more
likely to produce another spike in another cell at nearly the same
time. However, we assume further that a form of balanced inhi-
bition can cancel spike-time correlations (Simen et al., 2011b).
Under this assumption, any excitatory input of magnitude M to a
population would be balanced by inhibitory input of magnitude
γ M, with γ defining the excitatory-inhibitory ratio. That is, if

every excitatory spike received by a population produces an excita-
tory post-synaptic potential of magnitude 1 in one of its cells, then
that population also receives an inhibitory post-synaptic potential
of magnitude γ in one of its cells, on average.

These changes in self-excitation strength can be depicted in
the form of an “effective” activation function, fγ ,k , specifying the
output level of firing rate for a given level of net weighted input
strength, parameterized by the level of positive, recurrent feedback,
k, and the inhibitory balance, γ . As the model transitions from
leaky (Figure 4A) to bistable (Figure 4C) behavior through the
bifurcation point at which perfect integration occurs (Figure 4B),
this effective activation folds back on itself (Figure 4D). This
folding is known as a “cusp catastrophe” in the terminology of
non-linear dynamical systems.

The bistable behavior demonstrated in Figures 4C,E now serves
to establish a threshold level of input values: beginning with an
output level on the bottom stable attracting arm of the folded sig-
moid, inputs that exceed a critical level (the horizontal coordinate
of the bottom fold) trigger a transition toward the upper stable
attracting arm. Two key dynamical features now result. The first
is a clearly defined quantization – in fact, binarization – of output
levels. The upper stable arm of the folded sigmoid now represents
an ON state (Figure 4E); the lower stable arm represents an OFF
state; and potential confusion about which state the system is in
is reduced by a large no-man’s land of unstable activation lev-
els. Hysteresis also results: a dip in the input below the threshold
level does not now reduce the output to its OFF state; instead, it
remains ON until input dips below the horizontal coordinate of
the upper fold.

Figure 5 demonstrates an extremely simple circuit composed
of an integrator sandwiched between two latches, along with their
corresponding, predicted activation levels over time.

2.5. BEHAVIOR OF THE THRESHOLD MECHANISM, AND COMPARISON
TO FIRING-RATE DATA

Since we are concerned with discriminating between accumula-
tors and threshold mechanisms in perceptual decision making, a
critical question is the following: what should we expect the pop-
ulation activity corresponding to each mechanism to look like?
Previous work (e.g., Lo and Wang, 2006; Boucher et al., 2007) has
suggested that, in the case of eye movements, a successive sharpen-
ing of bursting activity occurs as activity propagates from cortical
circuits to the basal ganglia, and thereafter to the superior col-
liculus. That is, bursting activity begins more abruptly, with less
gradual ramping, and also ends more abruptly, at later stages of
processing.

The model shown in Figure 6 illustrates similar progressive
sharpening as signals progress from the accumulator to the thresh-
old latch2. Figure 6 also clearly shows, however, that the threshold
mechanism’s activation (in red) qualitatively matches the descrip-
tion of an accumulator, in that the level of activation rises through-
out the stimulus presentation to a maximum that is time-locked to
the response. Compared to the accumulator in this trace (green),
the threshold is very distinct, since its activation accelerates during

2Matlab code for this model is available at: www.oberlin.edu/faculty/psimen/
ThresholdModelCode.m
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FIGURE 4 | Effect of self-excitation on the sigmoidal activation unit
defined by equation 2. (A) The input-output equilibrium function f γ ,k of the
system (thick black curve) for the sigmoidal unit with self-excitation k = 0 and
noise coefficient c set to 0; when c > 0, this function still describes the
average behavior of the system. Upward and downward arrows and shading
indicate system velocity at different input-output combinations
(dark = negative; light = positive). (B) Self-excitation k = 1/(1 − γ ) cancels leak

and produces a vertical effective activation function and leakless temporal
integration [k < 1/(1 − γ ) produces leaky integration]. (C) Latching/switching
behavior occurs for all k > 1/(1 − γ ); here k = 2/(1 − γ ). (D) A section of the
complete catastrophe manifold defined over the space of input and
self-excitation pairs. (E) Binarization diagram demonstrating separated ON (1)
and OFF (0) areas of output activation and hysteresis. Dashed section of
S-curve denotes unstable equilibria; solid sections denote stable equilibria.

the stimulus into a final ballistic component. However, without the
green trace for comparison, the red threshold trace would be dif-
ficult to rule out as the signature of an evidence accumulator. Fur-
thermore, as shown later, task variables that modulate the ramping
activity of putative neural accumulators should also be expected
to modulate threshold-unit activity, compounding the difficulty of
discriminating between accumulator and threshold mechanisms.

One additional feature of the model in Figure 6 – the “shutoff
latch”component (black) – is worth mentioning at this point, since
without it, connection weights in the circuit can easily be tuned
to preserve a decision commitment over a delay period (note how

long the threshold mechanism is active in Figure 5, for exam-
ple). Without a shutoff signal, the circuit could make a decision
commitment and maintain it indefinitely (the red threshold latch
could latch into the ON state). Such behavior would be required
in working memory tasks, and may occur even in tasks for which
such behavior would seem to be suboptimal (e.g., Kiani et al.,
2008). For tasks that require immediate responding and resetting
for future decisions, however, adding a shutoff latch increases reset
speed and can prevent undesired latching of the threshold-unit.

Examining traces of FEF activity during visual search tasks for
neurons that have been interpreted as accumulators (reprinted in
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FIGURE 5 | A simple circuit composed of latches and an integrator. This
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ramp, which reduces to tuning how hard the Start unit drives the integrator
(Simen et al., 2011b). Here the Start unit is clamped to an output of 1 at 2 s,
then is clamped to 0 when the threshold-unit exceeds an output of 0.8.

Figure 7) shows how similar their average activation pattern is
to the pattern produced by the threshold model in Figure 6 (red
trace). Much the same is true for FEF recordings collected dur-
ing dot-motion discrimination tasks, as shown, for example, in
Figure 2 of Ding and Gold (2012, reprinted here as Figure 8).
In the model, furthermore, differences in evidence-accumulation
rates lead to corresponding differences in the ramp-up rate of the
threshold mechanism (see Figure 9C). Stochastic model simula-
tions in Figure 9C show that changes in the threshold mechanism
activation naturally mimic changes in the neural firing-rate data
in Figure 7 across fast/slow response-time conditions, as well as
the firing-rate changes in Figure 8 across motion coherence-level
conditions.

The pattern of activity shown in Figure 7 also motivates a
theoretical alternative to the threshold-interpretation proposed
in this paper. This alternative is known as the “gated accumu-
lation” theory of FEF movement neuron activity (Purcell et al.,
2010). According to this theory (at least as applied to monkey
eye movements during visual search tasks), evidence accumu-
lation is a process that may happen close to the time of the
response, after a kind of initial quality check determines whether
stimulus information should pass through a gate into the accu-
mulator. Changes in the rate of this accumulation determine
response time.

“Gate” is another word for threshold. Thus the gated accumu-
lation theory incorporates a threshold mechanism between the
retina and the accumulator that is not directly observed in the

recordings of Figure 7. What seems more parsimonious and con-
sistent with the predictions of the model presented here, however,
is that gated accumulators are themselves the gates. The rise-
time of any physical switching mechanism must be non-zero, so
ramping, or accumulation, is probably a necessary feature of gate
dynamics. Figures 9B,C show an example in which stronger, faster,
negative feedback is applied to the threshold latch by the shutoff
latch, as compared to the system in Figure 6 (to reduce the height
of the peak response). When noise is added to the processing,
the stimulus-locked and response-locked averages of the thresh-
old mechanism’s activation in this case look remarkably like the
gated-accumulator in Figure 7. In Figure 9, three different levels
of input signal were applied to the model in Figure 6 while keeping
the noise level constant.

One objection to this characterization of the (Purcell et al.,
2010) data might be based on the relatively long switching time
of such FEF switches, which according to Figure 7 could exceed
100 ms. Neural populations in the brain are clearly capable of tran-
sitioning much more quickly from low firing rates to high firing
rates, after all. For example, Figure 3 of Boucher et al. (2007) shows
a much more rapid transition from low to high firing rates, over the
course of only a few msec, in bursting neurons in the brainstem.
This extremely rapid switching behavior contrasts with hypoth-
esized switch dynamics in FEF that take 100 ms to complete a
transition from low to high firing rates. Such extended switch-on
times might therefore reasonably be taken to support accumulator
dynamics that do not involve bistability. However, it is important
to note that any bistable positive feedback system can be made to
linger at its inflection point of activation (the lower fold of the
cusp catastrophe manifold) for arbitrarily long times, if the inputs
to it are tuned precisely enough. The first gates/thresholds in the
processing cascade, when faced with weak signals, may be expected
therefore to ramp-up very gradually in some task conditions. Fur-
thermore, time-locked averaging of abrupt activation-increases
across trials can in any case smear out the abrupt onsets into a
gradual ramp if the onset-times are not perfectly locked to the
average-triggering event. Figure 9 demonstrates similar smearing
in panel b, in which Threshold Layer activation seems to rise to
a different average level in the “Low” vs. the “High” condition,
whereas response-locking as in panel c shows that activation rises
to the same level in all conditions, and ramping is less gradual than
in panel b.

Given these considerations, what phenomena would clearly dis-
tinguish threshold mechanisms from accumulator mechanisms?
So far, the green accumulator component of the model in Figure 6
lacks the red threshold trace’s late, ballistic component, and the
upward inflection point that initiates that component. This differ-
ence might seem to be a useful feature for distinguishing between
accumulator and threshold activations. Unfortunately, there is
good reason to suspect that the lack of feedback connections
from the threshold mechanism to the accumulator in the model
in Figure 6 is unrealistic. There are known to be connections
from FEF back to parietal cortex and extrastriate visual cortex
that can conduct spatial attentional signals, for example (Moore
and Fallah, 2001; Moore and Armstrong, 2003). When such feed-
back connections are included, as in Figure 10, the ballistic
component produced in the threshold mechanism is transferred
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FIGURE 6 | Noiseless activation traces of a complete circuit comprising
an accumulator/integrator, threshold latch, and shutoff latch, but lacking
positive feedback from threshold-to-accumulator. Blue: input signal;

green: accumulator; red: threshold latch; black: shutoff latch. Here the
stimulus was arbitrarily terminated when the threshold latch exceeded 0.8
activation. Note the post-response dip below baseline in the accumulator.

FIGURE 7 | Reprint of Figure 10A, from Purcell et al. (2010), showing
movement neurons in monkey FEF whose activation profiles correlate
with reaction-time in a visual search task.

backward to the accumulator as well. Under this plausible scenario,
the activation profiles of evidence accumulators and threshold
mechanisms become qualitatively indistinguishable.

According to the model in Figure 10, activation in both compo-
nents should ramp up during the course of a decision, then finish

with a ballistic jump near the time of the decision commitment.
As Figure 11 shows, activation in both components of this model
should be modulated by the stimulus presented and the choice
ultimately made – two criteria commonly used to associate firing-
rate data with accumulators. Furthermore, activation should be
modulated by the incentives offered, regardless of where in the
circuit any incentive-induced control signals are actually applied.
Applying a continuous, constant, additive biasing signal, either to
the accumulator (Figure 11A) or to the threshold (Figure 11B),
has qualitatively similar effects on the pre-ballistic components of
ramping activation in both mechanisms.

One possibility for discriminating between two candidates for
an accumulator/threshold pair would be to microstimulate one
area while inactivating the other, e.g., with muscimol. A threshold
mechanism should continue to display bistability in response to
increasing current injections when accumulators are inactivated,
whereas an accumulator should lack bistability and hysteresis – its
response to increasing currents should be a monotonic function of
that current when the feedback excitation from the corresponding
threshold mechanism is disabled.
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FIGURE 8 | Reprint of Figure 2, Ding and Gold (2012), showing accumulator-dynamics in FEF neurons likely to be inhibitory (top row) and excitatory
(bottom row). Data were obtained during a reaction-time version of a dot-motion discrimination task (A,D) and a memory-guided saccade task (B,E). (C) The
narrow action potential profile of the presumably inhibitory interneuron in (A,B). (F) The broader action potential profile of the presumably excitatory pyramidal
cell in (D,E).
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FIGURE 9 | Dynamics of a threshold latch in response to three different
signal strengths, with non-zero noise. Blue: strong signal; green: medium
signal; red: weak signal. (A) Input-output evolution of the threshold-unit’s
dynamics, starting at the origin and moving rightward, and upward along the
bottom branch of the folded, effective activation function. Note the failure of
the system’s output value to exceed 0.4 before the shutoff inhibition drives

the system down and to the left well before the system’s output reaches its
stable attracting value just below 1. (B) Stimulus-locked averages of activation
(dashed: accumulator; solid: threshold-unit). (C) Response-locked averages of
the threshold-unit activations, showing a common final level of activation, but
differences in buildup rate for different signal qualities defining the gray area
in the magnified inset (compare to Figures 7 and 8).

Of course, it is quite possible that accumulator and
threshold mechanisms consist of networks of neurons dis-
tributed widely across the brain. In that case, it would be

difficult to cleanly inactivate one component without affect-
ing the other. If clean, independent inactivation could be
achieved, however, then clear behavioral distinctions should
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FIGURE 10 | Same circuit as in Figure 6, except that excitatory
threshold-to-accumulator feedback is included. The green trace now
has a late ballistic component, reflecting the ballistic activation of the

threshold latch. Positive feedback also shortens the decision time
considerably relative to the same model without threshold-to-accumulator
feedback.

emerge: knocking out integrators should spare the ability to
respond, while performance accuracy should approach chance;
knocking out threshold mechanisms, in contrast, would abol-
ish responding altogether. A more graded impairment could
emerge from less potent inactivation: by inhibiting a thresh-
old mechanism, more evidence would be required to accumu-
late to produce a decision, leading to improved accuracy, and
increased response time; inhibiting an accumulator, in contrast,
would presumably both increase response times and decrease
accuracy.

Yet another possibility is that ramping activity in an area
during decision making might be more or less epiphenome-
nal – relating neither to evidence accumulation nor thresh-
old readout, per se, but instead to some sort of performance
monitoring, or even simply to spreading correlations of activ-
ity that play no functional role. In this case, the inactiva-
tion tests proposed here would fail to produce the intended
effects, but this outcome would at least suggest that a given
area is not functionally relevant to the decision-making task
at hand.

3. CONCLUDING REMARKS
Here I have assembled a list of reasons to consider a two-layer
neural model, much like others discussed in neuroscience and
psychology that are either explicitly composed of two layers, or
that combine an evidence-accumulation process with an idealized
decision threshold (e.g., Usher and McClelland, 2001; Corrado
et al., 2005; Diederich and Busemeyer, 2006; Lo and Wang, 2006;
Boucher et al., 2007; Ratcliff and McKoon, 2008; Gao et al., 2011).
Like those models, the model proposed here splits different func-
tions across different layers, rather than lumping them into a
single layer (e.g., Wang, 2002). It thereby sacrifices parsimony for
potentially better, more rewarding performance.

Unlike most multi-layer models, however, a model previ-
ously proposed by my colleagues and me (Simen et al., 2006)
sends continuous, additive biasing signals to control the sec-
ond layer (the threshold layer) rather than the first (the accu-
mulator layer). Other models that we have proposed (Simen
and Cohen, 2009; McMillen et al., 2011) tune multiplicative
weights applied to the accumulated evidence before it is fed
into the threshold mechanism. Increasing these weights amounts
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FIGURE 11 | Effects of biasing on the threshold-unit’s activation.
(A,B) Constant additive biasing of the accumulator can dramatically
decrease response times for a fixed level of stimulus strength
[offsets of stimulus-locked traces, (A)] and slightly modulates the
initial rise period of the activation [slight changes in response-locked
traces (B)]. (C–G) Constant additive biasing of the threshold-unit

also affects stimulus-locked response times (C) and dramatically
modulates the duration of the initial rise in response-locked
averages (D). (E–G) Three different levels of biasing (shifts of the
initial input level denoted by the colored circle) with colors
corresponding to the traces in (C) and (D) blue = low bias;
green = medium bias; red = high bias.

to reducing thresholds divisively. In certain tasks (e.g., Bogacz
et al., 2006), such approaches are both approximately optimal and
mechanistically feasible.

Optimal biasing of accumulators rather than thresholds, in
contrast, requires the biasing signals to be punctate rather than

continuous, and I have raised doubts here about the physiological
plausibility of punctate signals. These doubts are premised on
the idea that any switch-like process in the brain must have a
non-negligible rise-time and thus a non-zero, minimal duration –
a duration that might plausibly take up a substantial proportion of
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a typical response time in perceptual decision making. Human and
non-human primate behavior is frequently suboptimal, however,
so considerations of optimality do not rule out accumulator-
biasing. Behavioral data, nonetheless often appear to support
the notion that thresholds are strategically controlled, sometimes
optimally (Simen et al., 2009; Bogacz et al., 2010a; Balci et al.,
2011; Starns and Ratcliff, 2012). Furthermore, Ferrera et al. (2009)
observed FEF activity that is consistent with a role for FEF as a
tunable threshold mechanism, and (Ding and Gold, 2012) found a
multitude of different functions expressed in FEF after previously
finding much the same in the caudate nucleus (Ding and Gold,
2010). An inelegant but likely hypothesis supported by these and
similar findings is that the separate functions of decision-making
models are implemented by neural populations that are themselves
distributed widely across the brain. What seems unquestionable,
in any case, is that bistable switch mechanisms in either a one- or
two-layer model would appear to play a necessary role in any full
account of the data reviewed here.

It is also noteworthy that adaptive properties of the indi-
vidual neuron’s inter-spike time behavior have been explained
by a form of threshold adaptation that is analogous to the
population level threshold adaptation proposed here. As with
neural population models, different models of the individual
neuron can frequently mimic each other, whether they adapt
action potential thresholds (Kobayashi et al., 2009) or the rest-
ing membrane potential after firing (Brette and Gerstner, 2005).
In an international competition to model spike-time data, how-
ever, a relatively simple model with adjustable action poten-
tial thresholds (Kobayashi et al., 2009) defeated all other mod-
eling approaches (Gerstner and Naud, 2009). Consistent with
this evidence for adjustable action potential thresholds, recent
findings suggest that sophisticated signal processing can occur
at the axon’s initial segment (Kole and Stuart, 2012). The
same principles of accumulation, bistable readout, and thresh-
old adaptation may therefore play out at multiple levels of neural
organization.

I have argued that population threshold mechanisms are suffi-
ciently non-ideal in their physical implementation that they should
often be modeled explicitly rather than abstractly. What are the
risks of getting this modeling choice wrong? Erring on the side of
abstractness and simplicity risks:

1. misplacing the locus of evidence accumulation in the brain;
2. amplifying a disconnect between psychology and neuroscience

in terms of which model-parameter or neural mechanism is
modulated when speed-accuracy tradeoffs are adapted;

3. missing the possibility that cortical switch mechanisms might
allow the cerebral cortex to implement a complex, sequential
system (see Simen and Polk, 2010) without always requiring
the involvement of structures such as the basal ganglia.

Conversely, insisting on an overly elaborate model of thresholds
risks raising counterproductive doubts about neural data that is
in fact tied to evidence accumulation. It also risks unnecessary
inelegance and lack of parsimony. The optimal tradeoff between
such risks is rarely obvious, and this article has not derived one.
Its primary intent is to guard against the first kind of risk, since
much of the decision neuroscience community currently seems
safe from the second type.

A final, important point that should be kept in mind when
neural evidence is brought to bear on psychological models (made
elsewhere – e.g., Cohen et al., 2009 – but worth repeating) is that
apparently slight changes in tasks may have dramatic consequences
on the firing-rate patterns subserving performance of the tasks.
Thus, although the conventional wisdom appears to be that there
has been little electrophysiological evidence of threshold adapta-
tion as a mechanism underlying behavioral performance adapta-
tion, this lack probably depends heavily on the types of tasks that
neuroscientists have examined. Fairly strong behavioral support
(Simen et al., 2009; Bogacz et al., 2010a; Balci et al., 2011; Starns and
Ratcliff, 2012) has been gathered for models of threshold adapta-
tion in tasks for which such adaptation tends to maximize rewards
(e.g., Bogacz et al., 2006). The tasks proposed in Bogacz et al.
(2006) hold signal-to-noise ratios at a constant level across tri-
als within any block of trials, whereas most physiological research
with monkeys involves varying levels of signal-to-noise ratio from
trial to trial. It therefore appears that valuable information could
be gained about the neural mechanisms of economic influence on
decision making if the exact task described in, for example, Bogacz
et al. (2006), were tested directly in awake, behaving monkeys.
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