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Polarization-analyzed small-angle neutron scattering (SANS) is a powerful tool

for the study of magnetic morphology with directional sensitivity. Building upon

polarized scattering theory, this article presents simplified procedures for the

reduction of longitudinally polarized SANS into terms of the three mutually

orthogonal magnetic scattering contributions plus a structural contribution.

Special emphasis is given to the treatment of anisotropic systems. The meaning

and significance of scattering interferences between nuclear and magnetic

scattering and between the scattering from magnetic moments projected onto

distinct orthogonal axes are discussed in detail. Concise tables summarize the

algorithms derived for the most commonly encountered conditions. These tables

are designed to be used as a reference in the challenging task of extracting the

full wealth of information available from polarization-analyzed SANS.

1. Introduction
Small-angle neutron scattering (SANS) with polarization

analysis is a powerful tool for studying magnetism on the

nanoscale because it can be utilized to unambiguously sepa-

rate the structural and magnetic scattering contributions with

sensitivity to the direction of the magnetic spins. Unlike bulk

probes, this technique measures magnetic structures aligned

both parallel and perpendicular to an external magnetic guide

field and, notably, it is sensitive to the presence of magnetic

domains, even those that average to zero across the sample.

Additionally, this technique is nondestructive, provides sub-

nanometre resolution, and has the ability to penetrate deeply

into materials to probe the ensemble-averaged properties

spanning local magnetic morphology to collective magnetic

responses. Moreover, recent developments in the degree of

polarization within 3He neutron spin filters (Petoukhov et al.,

2006; Babcock et al., 2007; Keiderling et al., 2008; Chen et al.,

2009), which allow the neutron spins from a divergently

scattered beam to be assayed, have sparked renewed interest

in polarized SANS (e.g. Cywinski et al., 1999; Wiedenmann,

2005; Michels & Weissmüller, 2008; Feygenson et al., 2010;

Laver et al., 2010; Krycka et al., 2010; Chang et al., 2010;

Honecker et al., 2011; Dufour et al., 2011). The theory of

polarized neutron scattering was derived by Halpern &

Johnson (1939), refined by Blume (1963) and Maleyev et al.

(1963), and adapted for longitudinal polarization analysis (i.e.

with a magnetic guide field that is used to define the direction

of the neutron polarization axis, p̂p) by Moon et al. (1969).1

Additional treatments that utilize a combination of applied

field directions are provided by Schärpf & Capellmann (1993)

and Schweika (2010). If the incident neutron beam is polar-

ized, but the scattered neutron beam spin is not analyzed, it is

usually referred to as half-polarization or SANSPOL

(Wiedenmann, 2005). Neutron spin analysis of both the inci-

dent and the scattered longitudinally polarized neutrons has

been referred to as XYZ polarization (Schärpf & Capellmann,

1993; Schweika, 2010) in the general case and as POLARIS

(Wiedenmann, 2005; Keiderling et al., 2008) when applied to

SANS, but for simplicity we shall refer to it here generically as

polarization-analyzed SANS (PASANS).

Although the theory of polarized SANS is well established,

the complex combination of structural and directionally

sensitive magnetic scattering terms plus their interferences can

be daunting to disentangle and analyze. This is especially true

for the class of samples that may be structurally or magneti-

cally anisotropic (e.g. solvated magnetic nanoparticles that

form chains in response to application of a magnetic field or

shearing force). Two approaches have been adopted to

analyze PASANS data: (1) to reproduce the combined struc-

tural and magnetic scattering patterns from micromagnetic

models (Löffler et al., 2005; Ogrin et al., 2006; Michels &

Weissmüller, 2008; Saranu et al., 2008) and (2) to separate the

structural from the magnetic scattering in terms of the three

mutually orthogonal magnetic scattering contributions

(Schärpf & Capellmann, 1993; Schweika, 2010). Both

approaches have their merits and may be highly comple-

mentary. The latter, however, is quite powerful for samples

with largely unknown magnetic structures as it provides a

great deal of user insight into the underlying order and it

facilitates the choice of the most appropriate models. Such an

analysis also helps to ensure that, in situations in which the

scattering contribution from moments aligned perpendicular

1 Spherical neutron polarimetry (SNP), in which scattering occurs within a
nearly perfect zero magnetic field environment, has been developed by Tasset
(1989) and Brown (2001). Here the neutron spin is free to rotate upon
scattering, whereas in longitudinal polarization the neutron spins precess
about p̂p with a projection either parallel to or antiparallel to p̂p at all times. SNP
shall not be considered further within this manuscript.

electronic reprint



to the neutron polarization axis is relatively small yet impor-

tant, fine magnetic details are not lost within the global

modeling process.

Thus, the intent of this article is to compute, simplify and

summarize the procedures required to reduce longitudinally

polarization-analyzed SANS scattering contributions into

terms of the three mutually orthogonal magnetic scattering

contributions plus a structural contribution. We give special

emphasis to the treatment of systems that may be anisotropic

as a function of Q, the scattering wavevector [Q = |Q| =

(4�/�)sin(�/2), where � is the scattering angle and � is the

wavelength of the incident radiation], and develop specific

algorithms for the most commonly encountered conditions.

We also investigate the meaning and significance of inter-

ferences both between nuclear and magnetic scattering and

between the scattering from magnetic moments projected

onto distinct orthogonal axes. Finally, we discuss circum-

stances in which the existence or lack of a relationship

between terms can be used to further reduce and interpret the

polarization-analyzed data. The tables derived and provided

here are designed to be used as a handy reference to aid in the

challenging task of extracting the full wealth of information

available from polarization-analyzed SANS.

2. PASANS setup

A typical (longitudinal) PASANS setup is shown in Fig. 1, with

the incident beam along the Z axis, the neutron spin polar-

ization oriented along the X axis (as shown) or Z axis, and a

position-sensitive gas detector set in the XY plane. The

application of a magnetic guide field (which in practical terms

may be as small as several Gauss) defines p̂p about which the

neutrons precess at the Larmor frequency. For an unpolarized

incident neutron beam, half of the neutron spins will have a

projection parallel to p̂p (") and half antiparallel to p̂p (#). The

neutron beam may be polarized by sending it through a

supermirror cavity that preferentially reflects only one of

these spin states ("). (The polarization of the neutron beam is

defined as ðN" � N
#Þ=ðN" þ N

#Þ, where N
" and N

# denote the

number of neutrons found in the " or # state, respectively.)

The neutron spins adiabatically follow the applied magnetic

guide field, even as it changes direction along the neutron

beam path, as long as p̂p remains continuously well defined and

the precessional Larmor frequency of the neutron is signifi-

cantly higher than the rate of rotation of the guide field within

the neutron’s reference frame. In contrast, an electromagnetic

precession coil flipper is designed to flip (reverse by 180�) the

neutron spins that pass though. This is performed by abrupt

rotation of the polarization axis (i.e. nearly instantaneous in

comparison with the Larmor frequency of the neutron) to an

orthogonal direction and then back again, with the applied

magnetic field, neutron speed and distance between these two

polarization axis transformations precisely balanced so that

the neutrons precess about this orthogonal axis by exactly �
radians. Interaction with any magnetic moments present in the

sample also provides an abrupt change in the magnetic

environment, and this can lead to a flipping (180� reversal) of

the spin direction of the scattered neutron, depending on the

relative orientations of p̂p, Q and the sample magnetic moment

(discussed in detail in the next section). Coherent nuclear

scattering (or structural scattering), which contains informa-

tion about the spatial arrangement of the nuclei, does not

cause neutron spin flipping, and this is the basis for the

separation of structural and magnetic scattering. Finally, after

interaction with the sample, the neutrons pass through a

polarized 3He filter (analyzer) (Petoukhov et al., 2006;

Babcock et al., 2007; Keiderling et al., 2008; Chen et al., 2009).

This filter is filled with a gas containing 3He atoms, which each

possess a spin that aligns with the applied magnetic guide field

direction. This analyzer works by preferentially allowing

neutrons with spin oriented in the same direction as the 3He

atoms to pass through, but is highly absorbing of those

neutrons with spin antiparallel to the 3He atoms (combining to

form spin-neutral 4He). The orientation of the polarized 3He

atoms may be reversed using a tuned nuclear magnetic reso-

nance pulse (Jones et al., 2006) with negligible loss of polar-

ization. After correcting for efficiencies of the polarizing

elements (Majkrzak, 1991; Keiderling, 2002; Wildes, 2006;

Krycka et al., 2012), this setup allows four scattering cross

sections (�"", �#", �##, �"#) to be measured experimentally,

where the first arrow refers to the incident spin and the second

arrow to the scattered spin.

3. Mathematics of PASANS

The scattering cross section, �, is proportional to the squared

absolute value of the spatial Fourier transform (i.e. the scat-

tering amplitude; Chatterji, 2006) of the structural (i.e.

nuclear) and magnetic scattering length density, �N;M, defined

as
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Figure 1
(a) The PASANS setup includes a polarizing supermirror, an electro-
magnetic precession coil flipper, a sample holder with cryostat and
variable magnetic field, a 3He analyzer, and a position-sensitive gas
detector. Arrows indicate the neutron polarization direction, which
follows the applied magnetic field, rotating from vertical to horizontal to
along n̂n between the flipper, sample and 3He analyzer, respectively. (b)
Coordinate axes with n̂n k z. (c), (d) Magnetic definitions for p̂p (along
x) ? n̂n and p̂p (along z) k n̂n, respectively.
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N;MJðQÞ ¼ P
K

�N;MJ
ðKÞ expðiQ � RKÞ; ð1Þ

where J is any Cartesian coordinate and RK is the relative

position of the Kth scatterer. If a sample consists of multiple

repeated structures, it is often convenient to think of the

scattering amplitude as the product of the form factor (i.e. the

Fourier transform from scattering centers within just one

scattering unit) multiplied by the structure factor (i.e. the

Fourier transform of the relative locations at which the scat-

tering units reside).

As noted previously, scattering from magnetic moments, but

not from purely structural scattering, can flip the neutron spin.

In principle, ordered nuclear spins can also contribute to the

scattering cross sections (Moon et al., 1969). However, except

in the case of extreme environmental conditions, nuclear spins

are normally randomly oriented (as assumed here). The

presence of random nuclear spins can readily produce inco-

herent scattering, as in the classic case of hydrogen scattering.

Fortunately, incoherent scattering is directly measurable as a 2
3

spin-flip to 1
3 non-spin-flip scattering contribution, which we

shall assume either is negligible or has been measured and

accounted for (Gentile et al., 2000; Wildes, 2006; Gaspar et al.,

2010).

The way in which the magnetic moments within a sample

rotate (flip) the neutron spin upon scattering are governed by

two general rules. First, only the component of a magnetic

moment (or for our purposes the magnetic scattering ampli-

tude, M) that is perpendicular to Q may participate in neutron

scattering, and this is embodied by the Halpern–Johnson

vector, ���� (Halpern & Johnson, 1939). The calculation consists

of subtracting the projection of M onto the Q axis from M as

����ðQ̂QÞ ¼ M� ðQ̂Q �MÞ Q̂Q ¼ jMj ½M̂M� ðQ̂Q � M̂MÞ Q̂Q�: ð2Þ
For many purposes, it is conceptually simpler to define M in

terms of three orthogonal axes labeled A, B and C, where

A k p̂p and B� C ¼ A. This may be more succinctly written as

�J¼A;B;CðQ̂QÞ ¼ P
L¼A;B;C

ML½cosð!L;JÞ � cosð!Q;JÞ cosð!Q;LÞ�;

ð3Þ
where ! denotes the angle between the subscripted variables,

and can be further reduced solely into terms of �, the angle

made by Q and the x axis (Fig. 1).

The second rule is that, of the magnetic moment component

perpendicular to Q (already defined by ����), the portion that

lies along the neutron polarization axis, p̂p, contributes to non-

spin-flip scattering (" to ", or # to #), while the remaining

portion (? p̂p) produces spin-flip scattering (" to #, or # to ").

Taking into account handedness, mathematically this becomes

(Moon et al., 1969)

�
##
"" ðQÞ ¼ 1

2 N ��A

�� ��2
;

�
"#
#" ðQÞ ¼ 1

2 jð��B 	 i�CÞj2:
ð4Þ

In the expression for �
"#
#" , the imaginary �C term indicates that

�C is shifted in phase by 90� from �B, and the two components

add in quadrature.

4. Two polarization geometries: p̂p ? n̂n and p̂p k n̂n

We shall focus on two standard geometries: p̂p ? n̂n (Fig. 1c) and

p̂p k n̂n (Fig. 1d). We assume that n̂n k ẑz and define x̂x to coincide

with p̂p whenever p̂p ? n̂n. Thus, � is the angle Q makes with both

x̂x and p̂p.

For the p̂p ? n̂n geometry (where Qz = 0), equation (3)

becomes

�AðQÞ ¼ MA sin2ð�Þ �MB sinð�Þ cosð�Þ;
�BðQÞ ¼ MB cos2ð�Þ �MA sinð�Þ cosð�Þ;
�CðQÞ ¼ MC:

ð5Þ

For clarity, redefining MA, MB and MC as Mx;p̂px?n̂n, My;p̂px?n̂n and

Mz;p̂px?n̂n, respectively, in combination with equations (4) and

(5) produces

�
##
""
p̂px?n̂nðQÞ ¼ NðQÞN
ðQÞ þMx;p̂px?n̂nðQÞM


x;p̂px?n̂nðQÞ sin4ð�Þ
þMy;p̂px?n̂nðQÞM


y;p̂px?n̂nðQÞ cos2ð�Þ sin2ð�Þ
� ½Mx;p̂px?n̂nðQÞM


y;p̂px?n̂nðQÞ
þM


x;p̂px?n̂nðQÞMy;p̂px?n̂nðQÞ� sin3ð�Þ cosð�Þ
� ½NðQÞM


x;p̂px?n̂nðQÞ þ N
ðQÞMx;p̂px?n̂nðQÞ� sin2ð�Þ
	 ½NðQÞM


y;p̂px?n̂nðQÞ þ N
ðQÞMy;p̂px?n̂nðQÞ� sinð�Þ cosð�Þ;
�

"#
#"
p̂px?n̂nðQÞ ¼ Mz;p̂px?n̂nðQÞM


z;p̂px?n̂nðQÞ
þMy;p̂px?n̂nðQÞM


y;p̂px?n̂nðQÞ cos4ð�Þ
þMx;p̂px?n̂nðQÞM


x;p̂px?n̂nðQÞ sin2ð�Þ cos2ð�Þ
� ½Mx;p̂px?n̂nðQÞM


y;p̂px?n̂nðQÞ
þM


x;p̂px?n̂nðQÞMy;p̂px?n̂nðQÞ� sinð�Þ cos3ð�Þ
� i½Mx;p̂px?n̂nðQÞM


z;p̂px?n̂nðQÞ
�M


x;p̂px?n̂nðQÞMz;p̂px?n̂nðQÞ� sinð�Þ cosð�Þ
	 i½My;p̂px?n̂nðQÞM


z;p̂px?n̂nðQÞ �M

y;p̂px?n̂nðQÞMz;p̂px?n̂nðQÞ� cos2ð�Þ:

ð6Þ
Similarly, the scattering from p̂p k n̂n derived using equations (3)

and (4) becomes

�AðQÞ ¼ MA;

�BðQÞ ¼ MB cos2ð�Þ �MC sinð�Þ cosð�Þ;
�CðQÞ ¼ MC sin2ð�Þ �MB sinð�Þ cosð�Þ:

ð7Þ

Recasting MA, MB and MC as Mz;p̂pzkn̂n, Mx;p̂pzkn̂n and My;p̂pzkn̂n,

respectively, leads to

�
##
""
p̂pzkn̂nðQÞ ¼NðQÞN
ðQÞ þMz;p̂pzkn̂nðQÞM


z;p̂pzkn̂nðQÞ
� ½Mz;p̂pzkn̂nðQÞ ð�ÞN
ðQÞ þM


z;p̂pzkn̂nðQÞNðQÞ�;

�
"#
#"
p̂pzkn̂nðQÞ ¼Mx;p̂pzkn̂nðQÞM


x;p̂pzkn̂nðQÞ sin2ð�Þ
þMy;p̂pzkn̂nðQÞM


y;p̂pzkn̂nðQÞ cos2ð�Þ
� sinð�Þ cosð�Þ½Mx;p̂pzkn̂nðQÞM


y;p̂pzkn̂nðQÞ
þM


x;p̂pzkn̂nðQÞMy;p̂pzkn̂nðQÞ�:

ð8Þ
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In simplifying equations (6) and (8) the scattering transform of

N;MJðQÞ, equation (1), can be written more succinctly

(Brown, 2001) in terms of an amplitude, jN;MJj �
ðRejN;MJj2 þ ImjN;MJj2Þ1=2, and a net phase, ’N;MJ

, as

N;MJðQÞ ¼ jN;MJj expði’N;MJ
Þ: ð9Þ

If � and � represent non-equivalent terms of N;MJðQÞ, then

��
 ¼ j�j2;
��
 þ �
� ¼ 2j�j j�j cosð’� � ’�Þ;

i ��
 � �
�ð Þ ¼ �2j�j j�j sinð’� � ’�Þ:
ð10Þ

Here, j�j2 represents the intensity measured from one type of

scatterer (i.e. structural scattering or scattering from the

projection of magnetic moments oriented along a particular

axis). Combinations of � and � can be positive or negative and

are referred to as interference terms. The averaging of the

sines and cosines (sin and cos) is used as a reminder that each

scattering neutron has a spatial coherence length smaller than

that of the macroscopic sample and, thus, � and � each

represent a sum of scattering amplitudes. Note that the sine

and cosine terms involve only the difference between ’ values

from these scattering components, and the absolute value of

each ’ is immaterial. Therefore, an interference term is only

nonzero if there is a preserved phase difference that does not

average out across the sample. If cosð’� � ’�Þ ¼ �1 or 0, then

� and � are said to be in-phase and out-of-phase, respectively.

Table 1 defines reduced forms of the scattering cross sections

obtained from equations (6) and (8) that will be demonstrated

to be useful (see x6 below) in isolating the structural and

individual magnetic scattering components from the � and Q

symmetry of the scattering.

In the case of a sample in which the structural and indivi-

dual magnetic components are each spatially isotropic, the

relative contribution from each component can be identified

by considering the angular dependence of the reduced terms

defined in Table 1. These simple symmetries are provided in

Table 2 for p̂p ? n̂n, p̂p k n̂n and unpolarized (Unpol) experiments.

Simultaneous fitting for all scattering components as a func-

tion of � has been successfully employed to yield highly

detailed magnetic information (Wiedenmann, 2005; Michels &

Weissmüller, 2008; Dufour et al., 2011). However, one must be

very careful in performing this angular analysis (as will be

shown in the next section) since the sign of the terms

containing odd numbers of cosð�Þ and sinð�Þ may or may not

oscillate sign with quadrant, depending entirely upon the

magnetic symmetry of the sample.

5. Interference terms and symmetry

A, B, C, D, F and G (defined in Table 1) all contain inter-

ference terms and, as such, it would be advantageous to be
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Table 1
Scattering terms for p̂p ? n̂n (A, B, C and D) and p̂p k n̂n (E, F, G and H).

Tag, operation Result

AðQÞ ¼ �##
p̂px?n̂nðQÞ þ �""

p̂px?n̂nðQÞ jNðjQj; �Þj2 þ jMx;p̂px?n̂nðjQj; �Þj2 sin4ð�Þ þ jMy;p̂px?n̂nðjQj; �Þj2 cos2ð�Þ sin2ð�Þ � 2jMx;p̂px?n̂nðjQj; �Þj jMy;p̂px?n̂nðjQj; �Þj
�cosð’Mx ;p̂px?n̂n � ’My;p̂px?n̂nÞ sin3ð�Þ cosð�Þ

BðQÞ ¼ �##
p̂px?n̂nðQÞ � �""

p̂px?n̂nðQÞ 2jNðjQj; �Þj jMx;p̂px?n̂nðjQj; �Þj cosð’N � ’Mx ;p̂px?n̂nÞ sin2ð�Þ � 2jNðjQj; �Þj jMy;p̂px?n̂nðjQj; �Þj cosð’N � ’My;p̂px?n̂nÞ sinð�Þ cosð�Þ
CðQÞ ¼ �"#

p̂px?n̂nðQÞ þ �#"
p̂px?n̂nðQÞ jMz;p̂px?n̂nðjQj; �Þj2 þ jMy;p̂px?n̂nðjQj; �Þj2 cos4ð�Þ þ jMx;p̂px?n̂nðjQj; �Þj2 sin2ð�Þ cos2ð�Þ � 2jMx;p̂px?n̂nðjQj; �Þj jMy;p̂px?n̂nðjQj; �Þj

�cosð’Mx ;p̂px?n̂n � ’My;p̂px?n̂nÞ sinð�Þ cos3ð�Þ
DðQÞ ¼ �"#

p̂px?n̂nðQÞ � �#"
p̂px?n̂nðQÞ 2jMy;p̂px?n̂nðjQj; �Þj jMz;p̂px?n̂nðjQj; �Þj sinð’My ;p̂px?n̂n � ’Mz ;p̂px?n̂nÞ cos2ð�Þ � 2jMx;p̂px?n̂nðjQj; �Þj jMz;p̂px?n̂nðjQj; �Þj

�sinð’Mx ;p̂px?n̂n � ’Mz;p̂px?n̂nÞ sinð�Þ cosð�Þ

EðQÞ ¼ �##
p̂pzkn̂nðQÞ þ �""

p̂pzkn̂nðQÞ jNðjQj; �Þj2 þ jMz;p̂pzkn̂nðjQj; �Þj2

FðQÞ ¼ �##
p̂pzkn̂nðQÞ � �""

p̂pzkn̂nðQÞ 2jNðjQj; �Þj jMz;p̂pzkn̂nðjQj; �Þj cosð’N � ’Mz ;p̂pzkn̂nÞ
GðQÞ ¼ �"#

p̂pzkn̂nðQÞ þ �#"
p̂pzkn̂nðQÞ jMx;p̂pzkn̂nðjQj; �Þj2 sin2ð�Þ þ jMy;p̂pzkn̂nðjQj; �Þj2 cos2ð�Þ � 2jMx;p̂pzkn̂nðjQj; �Þj jMy;p̂pzkn̂nðjQj; �Þj cosð’Mx;p̂pzkn̂n � ’My ;p̂pzkn̂nÞ sinð�Þ cosð�Þ

HðQÞ ¼ �"#
p̂pzkn̂nðQÞ � �#"

p̂pzkn̂nðQÞ 0

Table 2
Angular scattering dependence for structural and magnetic isotropic
samples.

A, C, E and G are defined in Table 1. The sign of terms containing odd
numbers of sinð�Þ and cosð�Þ may oscillate.

Terms for p̂p ? n̂n.

A B C Unpol (Aþ C)

jNj2 1 0 0 1
jMxj2 sin4ð�Þ 0 sin2ð�Þ cos2ð�Þ sin2ð�Þ
jMyj2 sin2ð�Þ cos2ð�Þ 0 cos4ð�Þ cos2ð�Þ
jMzj2 0 0 1 1
2jNj jMxj cosð’N � ’Mx

Þ 0 1 0 0
�2jNj jMyj cosð’N � ’My

Þ 0 1 0 0
�2jMxj jMyj cosð’Mx

� ’My
Þ sin3ð�Þ cosð�Þ 0 sinð�Þ cos3ð�Þ sinð�Þ cosð�Þ

Terms for p̂p k n̂n. The choice of X and Y axes within the plane ? n̂n is arbitrary.

E F G Unpol (EþG)

jNj2 1 0 0 1
jMzj2 1 0 0 1
jMxj2 0 0 sin2ð�Þ sin2ð�Þ
jMyj2 0 0 cos2ð�Þ cos2ð�Þ
2jNj jMzj cosð’N � ’Mz

Þ 0 1 0 0
�2jMxj jMyj cosð’Mx

� ’My
Þ 0 0 sinð�Þ cosð�Þ sinð�Þ cosð�Þ
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able to separate them further on the basis of angular symmetry

(i.e. comparison of þ� and �� scattering) for the majority of

samples whose structural morphology is spatially symmetric

with respect to p̂p. Naively the interference terms of Table 1

that contain an odd number of sinð�Þ and cosð�Þ terms would

be expected to oscillate in sign with quadrant, while those

containing an even number of sinð�Þ and cosð�Þ terms would

not. Before fully utilizing �� scattering comparisons, however,

we need a solid understanding of how the terms of the form

j�j j�j sinð’� � ’�Þ and j�j j�j cosð’� � ’�Þ may also change

sign as a function of quadrant.

To illustrate this, let us examine the interference term

�2jMx;p̂px?n̂nðjQj; �Þj jMy;p̂px?n̂nðjQj; �Þj cosð’Mx;p̂px?n̂n � ’My;p̂px?n̂nÞ �
sinmð�Þ cosnð�Þ [i.e. AðQÞ and CðQÞ in Table 1], where n and m

are odd integers. The results from simulations for a series of

basic magnetic morphologies are shown in Fig. 2, where each

box corresponds to a scattering unit with �N ¼ 1 and �M ¼ 1,

pointing in the direction shown, or �M ¼ 0 where no arrow is

shown. From Fig. 2 it becomes evident that closed-domain

structures with zero net moment (structures v, vi, vii), of either

chirality or a mix of chiral sub-units, contribute positively in all

quadrants with maxima at � = 45, 135, 225 and 315�. This is

akin to the fourfold symmetry of dipolar structures reported

by Michels & Weissmüller (2008), and such scattering under-

scores that, even if there is no net magnetic moment, a

prominent scattering contribution can be observed if there is a

magnetic modulation along Q.

Structures with a net moment along the X axis, but not

along the Y axis (structures iii and iv), may contribute posi-

tively or negatively in each quadrant, but the scattering will be

the same for ��. Similarly, structures with a net moment along

the Y axis, but not along the X axis (i.e. structures iii or iv

rotated by 90�), may again contribute positively or negatively

in each quadrant, with scattering of the same sign for ��.

However, if there is a net moment along the X axis and a net

moment along the Y axis (as in a unidirectional magnetic

domain, structures i and ii), then the resulting scattering

contributions oscillate sign with quadrant. Notice that for

structures containing a net moment (i through iv) the sign of

cosð’Mx;p̂px?n̂n � ’My;p̂px?n̂nÞ flips when comparing two structures in

which either the X or the Y orientation of the moments is

reversed, but the sign remains unaltered when comparing

two structures in which both the X and the Y orientations

of the moments are reversed. In summary, a scattering

difference between �� and þ� can arise from a nonzero

�2jMx;p̂px?n̂nðjQj; �Þj jMy;p̂px?n̂nðjQj; �Þj cosð’Mx;p̂px?n̂n � ’My;p̂px?n̂nÞ �
sinmð�Þ cosnð�Þ term if there is a net moment along the X axis

and also a net moment along the Y axis (i.e. if there exists a net

canted moment that does not average to zero across the

sample).

The simulations shown in Fig. 2 can be used as well to

understand the interference between NðQÞ and MðQÞ, where

NðQÞ is equivalent in angular symmetry to an MðQÞ of positive

net moment. This implies that nuclear–magnetic interferences

similar to i through iv could exist, but not structures v through

vii, as the sign (direction) of NðQÞ cannot change. Thus,

�2jNðjQj; �Þj jMy;p̂px?n̂nðjQj; �Þj cosð’N � ’My;p̂px?n̂nÞ sinð�Þ cosð�Þ
(from B in Table 1) will oscillate sign with quadrant if there is a

net moment along the Y axis, but it will exhibit a uniform

sign for all quadrants if there are magnetic modulations with-

out a net My;p̂px?n̂nðjQj; �Þ moment. Conversely, 2jNðjQj; �Þj �
jMx;p̂px?n̂nðjQj; �Þj cosð’N � ’Mx;p̂px?n̂nÞ sin2ð�Þ (from B in Table 1)

and 2jNðjQj; �Þj jMz;p̂pzkn̂nðjQj; �Þj cosð’N � ’Mz;p̂pzkn̂nÞ (from F in

Table 1), which do not contain oscillating sinmð�Þ cosnð�Þ terms,

would be expected to be positive in all quadrants for a net

magnetic moment aligned parallel to the positive X or Y axis,

respectively. Notice how structures iii and iv in Fig. 2, which

are similar in pattern but have different domain edge loca-

tions, cancel when added together. Combining this long-range

isomorphism between NðQÞ and MðQÞ, which is needed for a

strong nuclear–magnetic interference term to exist, it becomes

highly probable that any nuclear–magnetic interference term

observed will originate only from net Mx;p̂px?n̂nðjQj; �Þ or net

My;p̂px?n̂nðjQj; �Þ moments. To identify these nuclear–magnetic

(B0 and B
00) and magnetic–magnetic (A0 and A

00, C0 and C
00, or

G
0 and G

00) correlations in the experimental data, it is essential

to isolate interference terms by comparing �� scattering as

shown in Table 3.

The remaining interference terms (both from D in Table 1),

�2jMy;p̂px?n̂nðjQj; �Þj jMz;p̂px?n̂nðjQj; �Þj sinð’My;p̂px?n̂n � ’Mz;p̂px?n̂nÞ �
cos2ð�Þ and 2jMx;p̂px?n̂nðjQj; �Þj jMz;p̂px?n̂nðjQj; �Þj sinð’Mx;p̂px?n̂n �
’Mz;p̂px?n̂nÞ sinð�Þ cosð�Þ, are observable as a difference in spin-

flip scattering. They are different from the other interferences

in that there is a sine, rather than cosine, dependence to their

phase differences. Thus, unlike the previous interferences

discussed for which there is a maximum when the interfering

terms are in phase, these interferences disappear when the

phase difference approaches zero. Instead, they become

nonzero only when there is a net phase difference preserved

across the sample, which would be indicative of an underlying

magnetic chiral structure. While previous research (Brown,

2001; Maleyev, 2004; Schweika, 2010) has shown that a

nonzero difference in the spin-flip scattering at � ¼ 0� is key to
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Figure 2
The scattering symmetry of �2jMx;p̂px?n̂nðjQj; �Þj jMy;p̂px?n̂nðjQj; �Þj �
cosð’Mx;p̂px?n̂n � ’My;p̂px?n̂nÞ sinmð�Þ cosnð�Þ, for odd m and n, is shown for a
series of basic magnetic morphologies. Although the absolute sign may
vary, the relative change of sign as a function of quadrant is key.
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identifying chiral structures, the � dependence of this differ-

ence can reveal the components of magnetization [Mz;p̂px?n̂nðQÞ
and Mx;p̂px?n̂nðQÞ or Mz;p̂px?n̂nðQÞ and My;p̂px?n̂nðQÞ] that participate

in the spin spiral.

6. General cases for nuclear and magnetic separation

Assorted constraints regarding structural uniformity, the

relative strengths of the magnetic moments oriented in specific

directions or the correlation between scattering terms may be

applied to simplify further the scattering equations given in

Tables 1 and 3 in order to isolate the structural and magnetic

components. In the remaining part of this paper we describe

some commonly encountered cases, their reduced scattering

equations and the specific requirements that must be met for

usage. The results are summarized in Table 4. Let us begin

with the most general conditions in which one has no knowl-

edge of sample isotropy or the relative behavior of the

magnetic components.

6.1. Case 1: general p̂p k n̂n

For p̂p k n̂n, equation (8) reduces to

jNðQÞj2 þ jMz;p̂pzkn̂nðQÞj2 ¼ EðQÞ;
jMx;p̂pzkn̂nðjQj; 90�Þj2 ¼ GðjQj; 90�Þ;
jMy;p̂pzkn̂nðjQj; 0�Þj2 ¼ GðjQj; 0�Þ:

ð11Þ

The interference term between Mx;p̂pzkn̂nðQÞ and My;p̂pzkn̂nðQÞ
vanishes at � = 0 and 90�, yet the original choice of the X and

Y axes is arbitrary within the p̂p k n̂n geometry. The underlying

mathematics does not preclude the existence of interference

terms arising from moments that are linear combinations of

Mx;p̂pzkn̂nðQÞ and My;p̂pzkn̂nðQÞ. Thus, it is more general to express

GðQÞ in terms of a net magnetic moment that is both ? Q

and ? n̂n, namely M��90�;p̂pzkn̂nðQÞ, plus an interference that

arises from the projection of magnetic moments, namely

M�þ45�;p̂pzkn̂nðQÞ and M��45�;p̂pzkn̂nðQÞ, onto coordinates axes which

are defined to be ? n̂n and located at � + 45� and � � 45�,

respectively. Thus (Case 1, Table 4),

jM��90�;p̂pzkn̂nðQÞj2 � jM�þ45�;p̂pzkn̂nðjQj; �Þj jM��45�;p̂pzkn̂nðjQj; �Þj
� cosð’M�þ45� ;p̂pzkn̂n � ’M��45� ;p̂pzkn̂nÞ ¼ GðQÞ: ð12Þ

This representation is distinct from previous descriptions in

that the defined directions of measured magnetism rotate with

Q. This geometry is ideal for measuring magnetic moments

? p̂p if there is no interference between M�þ45�;p̂pzkn̂nðjQj; �Þ and

M��45�;p̂pzkn̂nðjQj; �Þ. However, equation (12) would tend toward

zero if the interference term were sufficiently strong, compli-

cating the extraction of jM��90�;p̂pzkn̂nðQÞj2. It is also difficult to

separate jNðQÞj2 from jMz;p̂px?n̂nðQÞj2 from E (Table 1) alone.

6.2. Case 2: N and MX in phase for p̂p k n̂n

However, if it were known that jNðQÞj2 and jMz;p̂px?n̂nðQÞj2
were fully in phase [i.e. jcosð’N � ’Mz;p̂pzkn̂nÞj ) 1, where the

long-range nuclear and magnetic morphologies share the

same structure factors, as is typical under conditions of

magnetic saturation], then it would be possible to separate

these terms (Case 2, Table 4) using

jNðQÞj2; jMz;p̂pzkn̂nðQÞj2 ¼ 1
2 EðQÞ � E

2ðQÞ � F
2ðQÞ� �1=2

n o
;

ð13Þ
where the larger of the two terms [usually jNðQÞj2] corre-

sponds to the positive root. If additionally the structure is

known to be independent of the applied field, then it would be

reasonable to use jNðQÞj2 obtained from equation (13) at

saturation as input for equation (11) in order to extract
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Table 3
Reduction via symmetry considerations.

Tag, operation Result

A
0ðjQj; �Þ ¼ 1

2 ½AðjQj; �Þ þ AðjQj;��Þ� jNðjQj; �Þj2 þ jMx;p̂px?n̂nðjQj; �Þj2 sin4ð�Þ þ jMy;p̂px?n̂nðjQj; �Þj2 cos2ð�Þ sin2ð�Þ
Add �2jMx;p̂px?n̂nðjQj; �Þj jMy;p̂px?n̂nðjQj; �Þj cosð’Mx ;p̂px?n̂n � ’My;p̂px?n̂nÞ sin3ð�Þ cosð�Þ if net Mx, net My or closed MxMy

domains

A
00ðjQj; �Þ ¼ 1

2 ½AðjQj; �Þ � AðjQj;��Þ� �2jMx;p̂px?n̂nðjQj; �Þj jMy;p̂px?n̂nðjQj; �Þj cosð’Mx ;p̂px?n̂n � ’My ;p̂px?n̂nÞ sin3ð�Þ cosð�Þ if net Mx and net My moments

B
0ðjQj; �Þ ¼ 1

2 ½BðjQj; �Þ þ BðjQj;��Þ� 2jNðjQj; �Þj jMx;p̂px?n̂nðjQj; �Þj cosð’N � ’Mx ;p̂px?n̂nÞ sin2ð�Þ if net Mx

May also observe �2jNðjQj; �Þj jMy;p̂px?n̂nðjQj; �Þj cosð’N � ’Mx ;p̂px?n̂nÞ sinð�Þ cosð�Þ if zero sum, but spatially modulated My

B
00ðjQj; �Þ ¼ 1

2 ½BðjQj; �Þ � BðjQj;��Þ� �2jNðjQj; �Þj jMy;p̂px?n̂nðjQj; �Þj cosð’N � ’Mx ;p̂px?n̂nÞ sinð�Þ cosð�Þ if net My

May also observe 2jNðjQj; �Þj jMx;p̂px?n̂nðjQj; �Þj cosð’N � ’Mx;p̂px?n̂nÞ sin2ð�Þ if zero sum, but spatially modulated Mx

C
0ðjQj; �Þ ¼ 1

2 ½CðjQj; �Þ þ CðjQj;��Þ� jMz;p̂px?n̂nðjQj; �Þj2 þ jMy;p̂px?n̂nðjQj; �Þj2 cos4ð�Þ þ jMz;p̂px?n̂nðjQj; �Þj2 sin2ð�Þ cos2ð�Þ
Add �2jMx;p̂px?n̂nðjQj; �Þj jMy;p̂px?n̂nðjQj; �Þj cosð’Mx ;p̂px?n̂n � ’My;p̂px?n̂nÞ sinð�Þ cos3ð�Þ if net Mx, net My or closed MxMy

domains

C
00ðjQj; �Þ ¼ 1

2 ½CðjQj; �Þ � CðjQj;��Þ� �2jMx;p̂px?n̂nðjQj; �Þj jMy;p̂px?n̂nðjQj; �Þj cosð’Mx ;p̂px?n̂n � ’My ;p̂px?n̂nÞ sinð�Þ cos3ð�Þ if net Mx and net My moments

G
0ðjQj; �Þ ¼ 1

2 ½GðjQj; �Þ þGðjQj;��Þ� jMx;p̂pzkn̂nðjQj; �Þj2 sin2ð�Þ þ jMy;p̂pzkn̂nðjQj; �Þj2 cos2ð�Þ
Add �2jMx;p̂pzkn̂nðjQj; �Þj jMy;p̂pzkn̂nðjQj; �Þj cosð’Mx ;p̂pzkn̂n � ’My;p̂pzkn̂nÞ sinð�Þ cosð�Þ if Mx, net My or closed MxMy domains

G
00ðjQj; �Þ ¼ 1

2 ½GðjQj; �Þ �GðjQj;��Þ� �2jMx;p̂pzkn̂nðjQj; �Þj jMy;p̂pzkn̂nðjQj; �Þj cosð’Mx ;p̂pzkn̂n � ’My;p̂pzkn̂nÞ sinð�Þ cosð�Þ if net Mx and net My moments
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jMz;p̂pzkn̂nðQÞj2 at lower field conditions. Note, however, that

this approach extracts the Fourier transform of the net

moments pointing along Z, rather than the Fourier transform

of the magnetic domains that point along �Z that direct

measurement of jMZj2 would yield. These extractions may

vary considerably when the sample is far from magnetic

saturation.

6.3. Case 3: general p̂p ? n̂n

Since p̂p k n̂n does not always allow for unique separation of

the magnetic components, we shall focus the remainder of the

paper on the p̂p ? n̂n geometry. The angular-dependent scat-

tering equations of Table 1 simplify greatly along the coordi-

nate axes, defined by p̂p and n̂n, in this most general case (Case 3,

Table 4) as
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Table 4
Four cross-section analysis procedures.

The condition of jcosð’1 � ’2Þj ) 1 implies that the constituent terms are in phase. General cases 1 and 3 are not repeated, but can be used for every p̂p k n̂n or
p̂p ? n̂n situation, respectively. �(Q) is defined in the text.

Case Requirements for p̂pz k n̂n Equations

1 None jNðQÞj2 þ jMz;p̂pzkn̂nðQÞj2 ¼ EðQÞ
jM��90�;p̂pzkn̂nðQÞj2 � jM�þ45�;p̂pzkn̂nðQÞj jM��45�;p̂pzkn̂nðQÞj cosð’M�þ45� ;p̂pzkn̂n � ’M��45� ;p̂pzkn̂nÞ ¼ GðQÞ

2 jcosð’N � ’Mz ;p̂pzkn̂nÞj ) 1 jNðQÞj2; jMz;p̂pzkn̂nðQÞj2 ¼ 1
2 fEðQÞ � ½E2ðQÞ � F

2ðQÞ�1=2g

Case Requirements for p̂px ? n̂n Equations

3 None jNðjQj; 0�Þj2 ¼ AðjQj; 0�Þ
jNðjQj; 90�Þj2 þ jMx;p̂px?n̂nðjQj; 90�Þj2 ¼ AðjQj; 90�Þ
jMy;p̂px?n̂nðjQj; 0�Þj2 þ jMz;p̂px?n̂nðjQj; 0�Þj2 ¼ CðjQj; 0�Þ
jMz;p̂px?n̂nðjQj; 90�Þj2 ¼ CðjQj; 90�Þ
jNðQÞj2 � tan2ð�ÞjMz;p̂px?n̂nðQÞj2 ¼ AðQÞ � tan2ð�ÞCðQÞ

4 Isotropic jNðQÞj jNðQÞj2 ¼ jNðjQj; 0�Þj2 ¼ AðjQj; 0�Þ
jMx;p̂px?n̂nðjQj; 90�Þj2 ¼ AðjQj; 90�Þ � AðjQj; 0�Þ

5A Isotropic jNðQÞj jNðQÞj2 ¼ jNðjQj; 0�Þj2 ¼ AðjQj; 0�Þ
jcosð’N � ’Mx;p̂px?n̂nÞj ) 1 jMx;p̂px?n̂nðQÞj2 ¼ B

2ðQÞ=4 sin4ð�ÞAðjQj; 0�Þ
jNðQÞj jMy;p̂px?n̂nðQÞj cosð’N � ’My ;p̂px?n̂nÞ ) 0 cos4ð�ÞjMy;p̂px?n̂nðQÞj2 þ jMz;p̂px?n̂nðQÞj2 ¼ CðQÞ � jMx;p̂px?n̂nðQÞj2 sin2ð�Þ cos4ð�Þ

5B Isotropic jNðQÞj jNðQÞj2 ¼ jNðjQj; 0�Þj2 ¼ AðjQj; 0�Þ
jcosð’N � ’Mx;p̂px?n̂nÞj ) 1 jMx;p̂px?n̂nðQÞj2 ¼ B

02ðQÞ=4 sin4ð�ÞAðjQj; 0�Þ
Net (or zero) My

6A jMx;p̂px?n̂nðQÞj2 ¼ jMy;p̂px?n̂nðQÞj2 ¼ jMz;p̂px?n̂nðQÞj2 � jMequivðQÞj2 jMequivj2 ¼ CðQÞ=½1 þ cos2ð�Þ � 2 sinð�Þ cos3ð�Þ�
jMx;p̂px?n̂nj jMy;p̂px?n̂nj cosð’Mx ;p̂px?n̂n � ’My ;p̂px?n̂nÞ ) 0 jNðQÞj2 ¼ AðQÞ � sin2ð�ÞjMequivj2

6B jMx;p̂px?n̂nj2 ¼ jMy;p̂px?n̂nj2 ¼ jMz;p̂px?n̂nj2 � jMequivj2 jMequivðQÞj2 ¼ CðQÞ=½1 þ cos2ð�Þ�
cosð’Mx

� ’My
Þ ) 1 jNðQÞj2 ¼ AðQÞ � jMequivj2½sin2ð�Þ � 2 sin3ð�Þ cosð�Þ�

7 jMy;p̂px?n̂nðQÞj and jMz;p̂px?n̂nðQÞj ) 0 jMx;p̂px?n̂nðQÞj2 ¼ CðQÞ= sin2ð�Þ cos2ð�Þ
jNðQÞj2 ¼ AðQÞ � jMx;p̂px?n̂nðQÞj2 sin4ð�Þ

8A jcosð’N � ’Mx;p̂px?n̂nÞj ) 1 jNðQÞj2 ¼ 1
2 fAðQÞ � ½A2ðQÞ � B

2ðQÞ�1=2g
jNðQÞj jMy;p̂px?n̂nðQÞj cosð’N � ’My ;p̂px?n̂nÞ ) 0 jMx;p̂px?n̂nðQÞj2 ¼ B

2ðQÞ=4 sin4ð�Þ jNðQÞj2

8B jcosð’N � ’Mx;p̂px?n̂nÞj ) 1 jNðQÞj2 ¼ 1
2 fAðQÞ � ½A2ðQÞ � B

2ðQÞ�1=2g
Net (or zero) My;p̂px?n̂nðQÞ jMx;p̂px?n̂nðQÞj2 ¼ B

02ðQÞ=4 sin4ð�Þ jNðQÞj2

9A jcosð’N � ’My;p̂px?n̂nÞj ) 1 jNðQÞj2 ¼ 1
2 fAðQÞ � ½A2ðQÞ � B

2ðQÞ�1=2g
jNðQÞj jMx;p̂px?n̂nðQÞj cosð’N � ’Mx ;p̂px?n̂nÞ ) 0 jMy;p̂px?n̂nðQÞj2 ¼ B

2ðQÞ=4 sin2ð�Þ cos2ð�Þ jNðQÞj2

9B jcosð’N � ’My;p̂px?n̂nÞj ) 1 jNðQÞj2 ¼ 1
2 fAðQÞ � ½A2ðQÞ � B

2ðQÞ�1=2g
Net (or zero) jMx;p̂px?n̂nðQÞj jMy;p̂px?n̂nðQÞj2 ¼ B

002ðQÞ=4 sin2ð�Þ cos2ð�Þ jNðQÞj2

10A jcosð’N � ’Mx;p̂px?n̂nÞj ) 1 jNðQÞj2; �ðQÞ ¼ 1
2 fAðQÞ � ½A2ðQÞ � B

2ðQÞ�1=2g with

jcosð’N � ’My;p̂px?n̂nÞj ) 1 jMz;p̂px?n̂nðQÞj2 ¼ CðQÞ � �ðQÞ= tan2ð�Þ

10B Net or zero Mx;p̂px?n̂nðQÞ jNðQÞj2; �ðQÞ ¼ 1
2 fAðQÞ � ½A2ðQÞ � B

2ðQÞ�1=2g
Net or zero My;p̂px?n̂nðQÞ jMz;p̂px?n̂nðQÞj2 ¼ C

0ðQÞ � �ðQÞ= tan2ð�Þ
jcosð’N � ’Mx;p̂px?n̂nÞj ) 1 jMx;p̂px?n̂nðQÞj2 ¼ B

02ðQÞ=4 sin4ð�Þ jNðQÞj2
jcosð’N � ’My;p̂px?n̂nÞj ) 1 jMy;p̂px?n̂nðQÞj2 ¼ B

002ðQÞ=4 sin2ð�Þ cos2ð�Þ jNðQÞj2
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jNðjQj; 0�Þj2 ¼ AðjQj; 0�Þ;
jNðjQj; 90�Þj2 þ jMx;p̂px?n̂nðjQj; 90�Þj2 ¼ AðjQj; 90�Þ;

jMy;p̂px?n̂nðjQj; 0�Þj2 þ jMz;p̂px?n̂nðjQj; 0�Þj2 ¼ CðjQj; 0�Þ;
jMz;p̂px?n̂nðjQj; 90�Þj2 ¼ CðjQj; 90�Þ:

ð14Þ

A 2:1 symmetry would be expected for the spin-flip scattering

along � = 0� and � = 90�, respectively, if jMz;p̂pz?n̂nðQÞj2 is

isotropic and jMz;p̂pz?n̂nðQÞj2 ¼ jMy;p̂px?n̂nðQÞj2. Additionally, a

partial separation of terms for arbitrary � involving only

jNðQÞj2 and jMz;p̂px?n̂nðQÞj2 (Case 3, Table 4) can be performed

using

jNðQÞj2 � tan2ð�Þ jMz;p̂px?n̂nðQÞj2 ¼ AðQÞ � tan2ð�ÞCðQÞ ð15Þ
for � 6¼ 90, 270�. Equation (15) could be particularly useful for

determining whether jNðQÞj2 is isotropic if jNðQÞj �
jMz;p̂px?n̂nðQÞj or if jMz;p̂px?n̂nðQÞj is constant as a function of �. For

samples that do not deform when the direction of the applied

field is altered, equations (14) and (15) in conjunction with

rotation of the sample (or equivalently rotation of the applied

field from X to Y) would allow jNðjQj; 0�Þj2; jNðjQj; 90�Þj2
and jMx;p̂px?n̂nðjQj; 90�Þj2; jMx;p̂px?n̂nðjQj; 0�Þj2 to be resolved at

any field condition, as well as jMz;p̂px?n̂nðjQj; 0�Þj2 to be sepa-

rated from jMy;p̂px?n̂nðjQj; 0�Þj2.

7. Structurally isotropic samples

Structurally isotropic samples are often the most common and

simplest. Structural isotropy in this context means that the

structural morphology and resulting scattering at any parti-

cular jQj is invariant as a function of angle, � (e.g. the scat-

tering from a spherically symmetric object). This condition can

be checked by rotating the sample and determining whether

jNðjQj; 0�Þj2 ¼ AðjQj; 0�Þ remains constant. Similarly,

magnetic isotropy implies that the magnetic structures

composed of the projections of moments aligned along axes x,

y or z each retain a constant spatial distribution when viewed

in any particular Q direction. This is most likely to be achieved

in systems showing negligible remanence and at very small

applied magnetic guide fields, though it is difficult to check for

magnetic anisotropy by means of simple sample rotation about

p̂p because it involves changing the projection of the applied

magnetic field direction onto the sample, which in turn may

affect the underlying magnetic response. Structural isotropy

does not necessarily imply magnetic isotropy.

7.1. Case 4: isotropic N for p̂p ? n̂n

If it is known from a priori knowledge or experimental

PASANS evidence that structural and magnetic isotropy exist,

then one can use the angular symmetries presented in Table 2

to simultaneously identify and fit the � dependence of each

contributing scattering term (Wiedenmann, 2005; Michels &

Weissmüller, 2008; Dufour et al., 2011), with the caveat that

the sign of interference contributions containing odd numbers

of sinð�Þ and cosð�Þ terms may change sign with quadrant as

discussed previously (refer to Table 2). Alternatively, it may be

preferable to separate each term unambiguously. With

knowledge that the sample is structurally isotropic [i.e.

jNðjQj; 0�Þj2 ¼ jNðjQj; 90�Þj2], the jMx;p̂px?n̂nðjQj; 90�Þj2 and

jNðjQj; �Þj2 terms may be separated (Case 4, Table 4) using

jMx;p̂px?n̂nðjQj; 90�Þj2 ¼ AðjQj; 90�Þ � AðjQj; 0�Þ;
jNðQÞj2 ¼ jNðjQj; 0�Þj2: ð16Þ

This is the first of many unambiguous separations of magnetic

and structural scattering that polarization analysis affords, and

it can be quite important in determining magnetic behavior,

especially since the structural scattering typically dominates

the magnetic scattering.

7.2. Cases 5A–5B: isotropic N in phase with MX for p̂p ? n̂n

In addition to structural isotropy, if it were known that

NðQÞ and Mx;p̂px?n̂nðQÞ were in phase [i.e. jcosð’N � ’Mx;p̂px?n̂nÞj )
1, where the nuclear and magnetic morphologies share the

same structure factors, as is expected under conditions of

magnetic saturation] and also that NðQÞ and My;p̂px?n̂nðQÞ were

out of phase [i.e. jcosð’N � ’My;p̂px?n̂nÞj ) 0, as expected for

randomly oriented My;p̂px?n̂nðQÞ domains pointing along þY

and �Y with equal probability] or that My;p̂px?n̂nðQÞ ) 0, then

(case 5A)

jMx;p̂px?n̂nðQÞj2 ¼ B
2ðQÞ

4 sin2ð�ÞAðjQj; 0�Þ ð17Þ

for all � 6¼ 0, 180�. As a partial check, if jMx;p̂px?n̂nðQÞj> 0 and it

is in phase with jNðQÞj2, then BðjQj, 90�) (Table 1) should also

be > 0. Similarly, if jMy;p̂px?n̂nðQÞj ¼ 0 or is out of phase with

jNðQÞj2, then BðjQj, 0�) (Table 1) should be equal to 0.

The mere observation of jBðQÞj> 0 implies some level of

net magnetism along the X or Y axis and matched phase

between the structure and magnetism, and it provides an

indirect measure of the degree of magnetic saturation as

� ) 90�. However, it is difficult to quantify conclusively from

BðQÞ alone the net magnetic moment since a partial dephasing

between Mx;p̂px?n̂nðQÞ and NðQÞ, for example, would mimic a

reduction in jMx;p̂px?n̂nðQÞj. As a result of this possible ambi-

guity, it is a good idea to check the magnitude of

jMx;p̂px?n̂nðjQj; 90�Þj2 obtained from equation (17) with equation

(16), which is not dependent upon achieving any level of phase

matching (though it is more sensitive to any subtle instru-

mental non-uniformity across the detector). Additionally, it

shall be shown that Mx;p̂px?n̂nðQÞ determined from equation (17)

is often more statistically significant than that determined

from equation (16) for situations where jNðQÞj �
jMx;p̂px?n̂nðQÞj.

If the above phase conditions are met, this also implies that

Mx;p̂px?n̂nðQÞ is out of phase with My;p̂px?n̂nðQÞ (or the latter is

zero). Under these circumstances we can obtain information

about the perpendicular magnetism at all � (Case 5A) using

cos4ð�ÞMy;p̂px?n̂nðQÞ þMz;p̂px?n̂nðQÞ ¼CðQÞ � jMx;p̂px?n̂nðQÞj2
� sin2ð�Þ cos4ð�Þ: ð18Þ

It is likely that My;p̂px?n̂nðQÞ and Mz;p̂px?n̂nðQÞ are equivalent. An

observation of a 2:1 dependence for C0ðjQj; 0�Þ to C
0ðjQj, 90�)
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would be a good indicator of similarity, though lack of this 2:1

dependence does not preclude My;p̂px?n̂nðQÞ ¼ Mz;p̂px?n̂nðQÞ as �
variation within the magnetic morphology may be involved.

If the phase between My;p̂px?n̂nðQÞ and NðQÞ is unknown, yet

it is known that My;p̂px?n̂nðQÞ has a net moment, then any

nonzero NðQÞ–My;p̂px?n̂nðQÞ interference term will appear in

B
00ðQÞ and not in B

0ðQÞ (Table 3). Under this condition

jMy;p̂px?n̂nðQÞj2 is solvable (Case 5B) using

jMx;p̂px?n̂nðQÞj2 ¼ B
02ðQÞ

4 sin2ð�ÞAðjQj; 0�Þ : ð19Þ

8. Structure and magnetic phase demonstration

To elucidate the importance of the phase and interference,

consider the PASANS example consisting of randomly

oriented, structurally isotropic, close-packed crystallites

composed of 9 nm Fe3O4 nanospheres (Krycka et al., 2010)

which at magnetic saturation produced ð�M=�NÞ2 < 0:04. (The

sample choice is fairly unimportant, but the system selected

provides a good demonstration.) In an applied saturating field

of 1.25 T, equations (16) and (17) both return jMx;p̂px?n̂nðQÞj2
(Fig. 2a) of roughly equivalent shape and magnitude.

However, the interference term of jNðQÞj jMx;p̂px?n̂nðQÞj is much

stronger than jMx;p̂px?n̂nðQÞj2 alone, and the result is that the use

of equation (17) produces a more statistically significant

measurement than equation (16) for the same data (Fig. 3a).

In contrast, let us examine scattering from the same sample,

but at a remanent field of 0.005 T. Now equation (16) returns a

nonzero jMx;p̂px?n̂nðQÞj2 arising from long-range domains, while

equation (17) suggests that jMx;p̂px?n̂nðQÞj2 is negligible (Fig. 3b).

The former, however, agrees with the spin-flip measured value

jMz;p̂px?n̂nj2 [equation (14)] that would be expected for a struc-

turally isotropic sample near zero field. The reason that

equation (17) failed to isolate jMx;p̂px?n̂nðQÞj2 correctly is that

the magnetic scattering centers have formed domains that are

randomly oriented throughout the sample. The sign of

cosð’N � ’Mx;p̂px?n̂nÞ is, thus, randomly distributed from +1 to

�1, and a sum of all the domains cancels to zero. Simply put,

equation (17) measures the net Mx;p̂px?n̂nðQÞ magnetization,

while equation (16) reveals Mx;p̂px?n̂nðQÞ magnetic domains that

are both parallel and antiparallel to the guide field. Thus,

understanding how these interference terms behave when

interpreting the scattering patterns is of paramount impor-

tance to correctly interpreting PASANS data.

9. Structurally anisotropic samples

While analysis involving � = 0� and � = 90� comparisons may

adequately cover a variety of isotropic systems, such an

imposition excludes important classes of samples that are

anisotropic by design. Most notable among these systems are

solvated particles under the influence of an applied magnetic

field or flow gradient, patterned media that are not spherically

symmetric within the XY plane, magnetostrictive systems, and

crystalline materials with long-range order. By knowing

something about the sample’s response to applied field,

however, one can build from Case 3, Table 4 so as to include

scattering information at angles away from the coordinate

axes.

9.1. Cases 6A–6B: MX(Q) = MY(Q) = MZ(Q) for p̂p ? n̂n

If it is known that the magnetic moments are randomly

distributed (typical of systems without a remanent moment in

zero or near-zero applied fields), then the average magnetic

distribution along any given direction, jMx;p̂px?n̂nðQÞj ¼
jMy;p̂px?n̂nðQÞj ¼ jMz;p̂px?n̂nðQÞj � jMequivðQÞj, is separable from

NðQÞ using A and C (Table 1) along with knowledge of the

relative phase between Mx;p̂px?n̂nðQÞ and My;p̂px?n̂nðQÞ. If

Mx;p̂px?n̂nðQÞ and My;p̂px?n̂nðQÞ are out of phase, as for a series of

randomly distributed domains (Case 6A), then
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Figure 3
Nuclear and magnetic separation for close-packed 9 nm Fe3O4 nano-
particles. (a) Under conditions of saturation, Cases 4 or 5A from Table 4
can be used to extract jMx;p̂px?n̂nðjQj; 90�Þj2. (b) At remanence,
jMx;p̂px?n̂nðjQj; 90�Þj2 ¼ jMz;p̂px?n̂nðjQj; 90�Þj2, with the latter determined
using Case 3. However, Case 5A (unlike Case 4) fails to correctly
produce jMx;p̂px?n̂nðjQj; 90�Þj2 because the equal and oppositely oriented
magnetic domains cause cosð’N � ’Mx

Þ ) 0. For (a) and (b), subtraction
of a large jNðQÞj2 peak causes Case 4 to be statistically noisier than other
methods for determining the magnetic morphology, as indicated by the
errors bars representing one standard deviation.
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jMequivj2 ¼ CðQÞ=½1 þ cos2ð�Þ � 2 sinð�Þ cos3ð�Þ�;
jNðQÞj2 ¼ AðQÞ � sin2ð�Þ jMequivj2:

ð20Þ

Instead, if Mx;p̂px?n̂nðQÞ and My;p̂px?n̂nðQÞ are in phase, as for

magnetic domains or nanoparticles each containing

Mx;p̂px?n̂nðQÞ and My;p̂px?n̂nðQÞ structures that are the same from

domain to domain or particle to particle (Case 6B), then

jMequivj2 ¼ CðQÞ=½1 þ cos2ð�Þ�;
jNðQÞj2 ¼ AðQÞ � jMequivj2½sin2ð�Þ � 2 sin3ð�Þ cosð�Þ�: ð21Þ

Other related conditions should lie somewhere between the

extremes of Cases 6A and 6B. Unfortunately, it may be diffi-

cult to determine the degree to which Mx;p̂px?n̂nðQÞ and

My;p̂px?n̂nðQÞ are correlated since the term found in CðQÞ is

combined with other magnetic terms that may vary as a

function of �. However, C
00ðQÞ (Table 3) can provide an

indication of phase relations as long as Mx;p̂px?n̂nðQÞ and

My;p̂px?n̂nðQÞ each contain net moments.

9.2. Case 7: minimal perpendicular magnetism for p̂p ? n̂n

If My;p̂px?n̂nðQÞ and Mz;p̂px?n̂nðQÞ are negligible (e.g. if they are

composed of small, equal and oppositely oriented domains

without a periodic modulation), then jMx;p̂px?n̂nðQÞj2 may be

isolated in the spin-flip scattering, C, while jNðQÞj2 can be

obtained from the subtraction of jMx;p̂px?n̂nðQÞj2 from the non-

spin-flip scattering, A (Table 1), using (Case 7)

jMx;p̂px?n̂nðQÞj2 ¼ CðQÞ= sin2ð�Þ cos2ð�Þ;
jNðQÞj2 ¼ AðQÞ � jMx;p̂px?n̂nðQÞj2 sin4ð�Þ: ð22Þ

As always, jMx;p̂px?n̂nðQÞj2 cannot be measured directly along � =

0� since only moments perpendicular to Q are measurable

(Halpern–Johnson vector selection rules).

9.3. Cases 8A–8B: N and MX in phase for p̂p ? n̂n

If Mx;p̂px?n̂nðQÞ is sufficiently long ranged so as to be in phase

with NðQÞ (as would be expected near saturation), but

My;p̂px?n̂nðQÞ ) 0 or it is out of phase with NðQÞ, then

Mx;p̂px?n̂nðQÞ and NðQÞ may be solved using quadratic equations

of A and B (Table 1) using (Case 8A)
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Figure 4
Nuclear and magnetic separation at a series of angles, using Case 8. Notice that the sample of close-packed 9 nm Fe3O4 nanospheres is structurally
isotropic (jNðQÞj2) and almost magnetically isotropic in both jMx;p̂px?n̂nðQÞj2 and jMz;p̂px?n̂nðQÞj2. [jMx;p̂px?n̂nðQÞj2 cannot be measured at � ¼ 0� because of the
Halpern–Johnson spin selection rules.] The degree of uncertainty may be inferred from the smoothness of the curves.
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jNðQÞj2 ¼ 1
2 AðQÞ � A

2ðQÞ � B
2ðQÞ� �1=2

n o
;

jMx;p̂px?n̂nðQÞj2 ¼ B
2ðQÞ=4 sin4ð�Þ jNðQÞj2:

ð23Þ

The requirement that jNðQÞj jMy;p̂px?n̂nðQÞj cosð’N � ’My;p̂px?n̂nÞ )
0 may be verified if B

00ðQÞ ) 0 (Table 3) and My;p̂px?n̂nðQÞ is

known to have a net (or zero) moment. Alternatively, if the

phase between My;p̂px?n̂nðQÞ and NðQÞ is uncertain, but it is

known that My;p̂px?n̂nðQÞ has a net (or zero) moment, then B
0

(Table 3) may be used in place of B (Table 1) using (Case 8B)

jMx;p̂px?n̂nðQÞj2 ¼ B
02ðQÞ=4 sin4ð�Þ jNðQÞj2: ð24Þ

9.4. Cases 9A–9B: N and MY in phase for p̂p ? n̂n

If My;p̂px?n̂nðQÞ is sufficiently long ranged so as to be in phase

with NðQÞ (as could be expected if the sample were first

saturated along Y with the magnetic spins frozen in place

before the applied field along Y was removed and a small

guide field was instead applied along X), but Mx;p̂px?n̂nðQÞ ) 0

or it is out of phase with NðQÞ, then My;p̂px?n̂nðQÞ and NðQÞ may

be solved from quadratic equations of A and B (Table 1) using

(Case 9A)

jNðQÞj2 ¼ 1
2 AðQÞ � A

2ðQÞ � B
2ðQÞ� �1=2

n o
;

jMy;p̂px?n̂nðQÞj2 ¼ B
2ðQÞ=4 sin2ð�Þ cos2ð�Þ jNðQÞj2:

ð25Þ

The requirement that jNðQÞj jMx;p̂px?n̂nðQÞj cosð’N � ’My;p̂px?n̂nÞ )
0 may be verified if B

0ðQÞ ) 0 (Table 3) and Mx;p̂px?n̂nðQÞ is

known to have a net (or zero) moment. Alternatively, if the

phase between Mx;p̂px?n̂nðQÞ and NðQ) is uncertain, but it is

known that Mx;p̂px?n̂nðQÞ has a net (or zero) moment, then B
00

(Table 3) may be used in place of B (Table 1) using (Case 9B)

jMy;p̂px?n̂nðQÞj2 ¼ B
002ðQÞ=4 sin2ð�Þ cos2ð�Þ jNðQÞj2: ð26Þ

9.5. Cases 10A–10B: N in phase with both MX and MY for
p̂p ? n̂n

If both Mx;p̂px?n̂n and My;p̂px?n̂n share coherence with NðQÞ and

both contain uncompensated moments [i.e. cosð’N � ’Mx;p̂px?n̂nÞ )
1 and cosð’N � ’My;p̂px?n̂nÞ ) 1, such as a sample whose form

factors are magnetically equivalent from particle to particle or

domain to domain], then (Case 10A)

NðQÞj2; �ðQÞ ¼ 1
2 AðQÞ � A

2ðQÞ � B
2ðQÞ� �1=2

n o
;

jMz;p̂px?n̂nðQÞj2 ¼ CðQÞ � �ðQÞ= tan2ð�Þ;
ð27Þ

where �ðQÞ � jMx;p̂px?n̂nðQÞj2 sin4ð�Þ þ jMy;p̂px?n̂nðQÞj2 cos2ð�Þ �
sin2ð�Þ � 2jMx;p̂px?n̂nðQÞj jMy;p̂px?n̂nðQÞj cosð’Mx;p̂px?n̂n � ’My;p̂px?n̂nÞ �
sin3ð�Þ cosð�Þ ¼ B

2ðQÞ=4jNðQÞj2. In addition, if it is known

that jMx;p̂px?n̂nðQÞj and jMy;p̂px?n̂nðQÞj each contain net (or zero)

moments, then further magnetic separation may be performed

using (Case 10B)

jMz;p̂px?n̂nðQÞj2 ¼ C
0ðQÞ � �ðQÞ= tan2ð�Þ;

jMx;p̂px?n̂nðQÞj2 ¼ B
02ðQÞ=4 sin4ð�Þ jNðQÞj2;

jMy;p̂px?n̂nðQÞj2 ¼ B
002ðQÞ=4 sin2ð�Þ cos2ð�Þ jNðQÞj2:

ð28Þ

This simplification, and the many others that may be

constructed using B
0 and B

00 or C0 and C
00 (Table 3) in place of

B or C (Table 1), should only be applied to samples that are

known to be symmetric with respect to p̂p.

10. Experimental angular resolution demonstration

To illustrate an experimental application of the equations in

Table 4 for performing angular analysis, let us return once

again to the scattering patterns from randomly oriented, close-

packed crystallites composed of 9 nm Fe3O4 nanospheres in

an applied saturating field of 1.25 T. jNðjQj; 0�Þj2, obtained

using the most general case (Case 3, Table 4), and

jMx;p̂px?n̂nðjQj; 90�Þj2, obtained using Case 4 (Table 4) with the

assumption that the sample was structurally isotropic, were

each dominated by Bragg peaks as shown in Fig. 4. Combined

with jMz;p̂px?n̂nðjQj; 90�Þj2, obtained using Case 3 (Table 4), this

separation revealed a canted magnetic shell structure (Krycka

et al., 2010). One may well ask whether this shell is truly

isotropic in nature, as postulated. To answer this question, we

apply Case 8A of Table 4 to solve for jNðQÞj2 and

jMx;p̂px?n̂nðQÞj2 at arbitrary �. With jNðQÞj2 solved at all �,

jMz;p̂px?n̂nðQÞj2 is extracted using A and C (Table 1) in

conjunction with Case 3 (Table 4). It should be noted that an

infinitely small slice of experimental data cannot be taken

about a specific angle as the data set soon becomes statistically

noise limited. Thus, for practical purposes we have taken �10�

sector slices about an angle � of interest. To compensate for

the angular dependence inherent in the p̂px ? n̂n geometry, we

utilize the following integrations (where � and � correspond to

the � angular limits):

Z�

�

tan2ð�Þ d� ¼ tanð�Þ � tanð�Þ � �þ �½ � 1

�� �
;

Z�

�

sin2ð�Þ cos2ð�Þ d� ¼
�
�� �

8
� sinð4�Þ � sinð4�Þ

32

�
1

�� �
;

Z�

�

sin4ð�Þ d� ¼
�

3ð�� �Þ
8

þ sinð4�Þ � sinð4�Þ
32

� sinð2�Þ � sinð2�Þ
4

�
1

�� �
;

Z�

�

cos4ð�Þ d� ¼
�

3ð�� �Þ
8

þ sinð4�Þ � sinð4�Þ
32

þ sinð2�Þ � sinð2�Þ
4

�
1

�� �
:

ð29Þ
The results are presented in Fig. 4.
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It is immediately obvious that jNðQÞj2 remains nearly

constant with angle, thus confirming the structurally isotropic

nature of this sample. jMx;p̂px?n̂nðQÞj2, though fairly uniform as a

function of angle, does increase slightly in going from � = 90�

to � = 0�. The interference between NðQÞ and Mx;p̂px?n̂nðQÞ is

likely to be more strongly correlated along the applied field

direction than perpendicular to it, and could explain the

variation of jMx;p̂px?n̂nðQÞj2. Extraction of jMz;p̂px?n̂nðQÞj2 appears

to flatten slightly for � approaching 90�. This may mean that

the jMz;p̂px?n̂nðQÞj2 morphology (form factor) is slightly less

uniform in the Y direction than the X direction, or that the

short-range structure factor differs slightly along Y versus X.

However, since the same general shape and scattering

magnitude are maintained, this suggests that the basic

morphology remains nearly isotropic. The main point,

however, is that a full angular analysis can be obtained in

accordance with Table 4.

11. Conclusions

Polarization-analyzed SANS is a powerful tool that can be

employed in the study of magnetic interactions with the ability

to resolve three-dimensional magnetism. However, such

experiments often produce a wealth of structural and

magnetic information that can be challenging to disentangle in

the realm of anisotropic materials, such as biologically rele-

vant magnetic systems in solution, magnetostrictive materials,

and patterned or crystalline samples with intrinsic structural

anisotropy. Building upon previous work (Moon et al. 1969;

Schärpf & Capellmann, 1993; Wiedenmann, 2005; Michels &

Weissmüller, 2008) and applying basic symmetry arguments,

we discuss how various phase relationships between structural

and magnetic interference terms influence the symmetry

patterns observed (Table 3). We also outline straightforward

analytic procedures (Table 4) for separating the structural and

magnetic components in the most common experimental

conditions. This contribution should thus serve as a handy

reference for experimentalists trying to determine how to best

reduce their polarization-analyzed SANS (PASANS) results.

It is clear that PASANS has entered an exciting growth phase,

owing largely to advances in polarized 3He spin filters capable

of analyzing divergently scattered beams (Petoukhov et al.,

2006; Babcock et al., 2007; Keiderling et al., 2008; Chen et al.,

2009), and this technique may well prove vital in under-

standing the collective behavior of many magnetic systems on

the nanoscale.
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08ER40481.

References

Babcock, E., Petoukhov, A., Chastagnier, J., Jullien, D., Lelièvre-
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