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Deep Reinforcement Learning for Open Multiagent System 

TIANXING ZHU, Oberlin College, USA 

In open multiagent systems, multiple agents work together or compete to reach the goal while members of 
the group change over time. For example, intelligent robots that are collaborating to put out wildfres may 
run out of suppressants and have to leave the place to recharge; the rest of the robots may need to change 
their behaviors accordingly to better control the fres. Thus, openness requires agents not only to predict 
the behaviors of others, but also the presence of other agents. We present a deep reinforcement learning 
method that adapts the proximal policy optimization algorithm to learn the optimal actions of an agent in 
open multiagent environments. We demonstrate how openness can be incorporated into state-of-the-art 
reinforcement learning algorithms. Simulations of wildfre suppression problems show that our approach 
enables the agents to learn the legal actions. 

CCS Concepts: • Computing methodologies → Multi-agent reinforcement learning; Planning and 
scheduling; Markov decision processes. 

Additional Key Words and Phrases: multiagent systems, open environment, deep reinforcement learning, 
neural networks 

ACM Reference Format: 

Tianxing Zhu. 2022. Deep Reinforcement Learning for Open Multiagent System. 1, 1 (April 2022), 16 pages. 
https://doi.org/XXXXXXX.XXXXXXX 

1 INTRODUCTION 

Multiagent systems consist of multiple intelligent agents (computational entities) that are interacting 
with the environment they are in [Shoham and Leyton-Brown, 2009]. In multiagent systems, 
reasoning about others’ behaviors will make collaboration of artifcial intelligence possible and 
reach the shared goal faster. However, many real-world environments involve openness where 
individual agents join or leave the environment over time, which makes decision-making especially 
challenging, because now agents not only need to understand other agents’ actions to make good 
decisions, but also need to predict the presence of them before reasoning their behaviors. For 
example, in the case of self-driving cars, the total number of intelligent cars (agents) is fxed, but 
the number of them at a specifc location changes over time. Even if individual cars can learn from 
others’ behavior to help them analyze the trafc at the location, openness requires them to predict 
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2 Tianxing Zhu 

whether others are present at the location in the frst place. Trying to understand cars that are 
not present in the environment will result in inaccurate knowledge, which leads to non-optimal 
decisions. 

In this paper, we focus on using reinforcement learning to learn how to make optimal decisions 
in open environments? The openness of the environment allows agents to be active or inactive 
in the environment over time; for real-world environments such as wildfre suppression, agents 
need to put out diferent scales of fres together while joining or leaving the area to refll the 
suppressants. We aim to make agents not only learn what actions to take to efciently put out the 
fres, but also how to distribute their extinguishing power within a dynamic group. Previous work 
has focused on planning solution that uses a Monte Carlo tree search algorithm [Eck et al., 2019]. 
However, a planning solution requires the agent to have enough information of the system before 
they make the plan, and a lot of information might not be immediately available. A reinforcement 
learning solution uses the actual experience of the agent from its interaction with the environment 
to improve its understanding of the environment over time. 

We propose a deep reinforcement learning approach to train the agents to reason in these situations. 
By adapting proximal policy optimization [Schulman et al., 2017], a state-of-the-art single-agent 
reinforcement learning algorithm, we bring its advantage in balancing exploration and exploitation, 
as well as the ease of hyperparameters tuning into multiagent systems. To promote learning of 
the dynamic caused by the openness of the environment, we incorporate the internal state of the 
agent, which gives a clue to the agent’s presence in our state representation of the environment. 

Our results show that in the simulation of the wildfre suppression problem [Chandrasekaran 
et al., 2016], our method enables agents to choose the legal actions that do not result in penalties 
on almost every time step. Further experiments demonstrate the advantages of our adaptations 
in both learning speed and performance compared to other regular deep reinforcement learning 
algorithms. 

In the following sections, we will overview the background and related work, starting from the 
basics of reinforcement learning to the state-of-the-art proximal policy optimization algorithm 
for deep reinforcement learning. Then we will formulate our problem in the context of deep 
reinforcement learning and introduce our methods in detail. Finally, in the experiments section, we 
will talk about the strategies we used to tune the hyperparameters, followed our fnal results. We 
conclude by summarizing our work and propose promising directions for future work. 

2 BACKGROUND 

2.1 Reinforcement Learning and MDP 

Reinforcement learning, as its name suggests, is learning by receiving reinforcement or reward. In the 
feld of artifcial intelligence, we defne an agent as anything that perceives its environment through 
interaction with the environment. At each time step, the agent interacts with the environment 
by performing an action in the current state of the environment and receives feedback from the 
environment. The feedback received by the agent is the reward, which provides a direct evaluation 
on the quality of the agent’s behavior. The state of the environment changes due to the action. At 
the next time step, the agent takes another action and receives another reward, and so forth. An 
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3 Deep Reinforcement Learning for Open Multiagent System 

intelligent agent learns to maximize the reward by trial and error [Russell and Norvig, 2010]. For 
example, in the wildfre suppression environment, the frefghters are the agents. At every time 
step, the state of the environment could be represented by the set of fre intensities of each fre. 
Each agent chooses an action to perform, such as fghting one of the fre or reflling its suppressant. 
The environment then immediately gives a reward to the agent; a high reward might be given 
when a fre is put out, while a penalty (negative reward) might be given when a fre is burned out. 
The action afects the state of the environment, and thus the state changes. 

We use a Markov Decision Process (MDP) to describe these sequential decision problems. Formally, 
an MDP consists of: 

• � , the set of all possible states � of the environment. 
• �, the set of all actions �. 
• � : � × � → � (�), the stochastic transition model, which gives the probability of arriving at a 

′
state � after taking action � at a state � , or � (� ′ |�, �). 

• � : � × � × � → R, the reward function, which gives the reward obtained after taking action 
� in state � and arriving at state � ′ , or � (�, �, � ′). 

A policy is the decision-making mechanism used by the agent to decide which action to take in a 
given state. A stochastic policy, formally, � : � → � (�) defnes the probability of performing each 
action at a given state; while a deterministic policy, formally, � : � → � maps an action to a state, 
which means the agent will always take the same action at a given state. The policy acts as the 
brain of the agent. In reinforcement learning problems where agents have to learn how to act, It is 
crucial to have a stochastic policy so the agent can explore the environment by trying out diferent 
actions at a state rather than simply repeating the frst action that seems promising. 

An optimal policy is the policy that maximize the utility of the agent. Utility represents the combi-

nation of immediate reward (given by the reward function) and long-term reward. We use a utility 
function to balance them, formally, 

�∑ 
� � (�0) = �� � (�� , � (�� ) , ��+1) (1) 

�=0 

where � is the horizon representing the maximum time step, and � ∈ (0, 1] is the discount factor 
that controls how much we weight the future rewards [Russell and Norvig, 2010]. 

2.2 Bellman Equation and Q-Learning 

To use our MDP model to improve the policy, or planning in the environment, we use the Bellman 
Equation: ∑ 

� (�� , �) = � (�� , �, �� +1) [� (�� , �, �� +1) + � ∗ � (�� +1)] (2) 
�� +1 ∈� 

� (�) = max � (�, �) (3)

� ∈� 

� (�) = argmax� (�, �) (4) 
� ∈� 
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4 Tianxing Zhu 

The V-function � (�), or the state-value function, measures the expected future utility (Eq. 1), which 
means it tells us how good or bad the current state � is following the current policy. The Q-function 
� (�, �), or the action-value function (Eq. 2), defnes the value of taking action � in the state � under 
the current policy [Russell and Norvig, 2010]. The Bellman Equation shows that the value of taking 
action � at state � can be decomposed into two parts, the immediate reward plus the discounted 
future utility recursively. 

When we have access to a complete MDP model (we know �, �,� , �), we can apply the Bellman 
Equation directly to exploit it and fnd a good policy. However, the transition function � and the 
reward function � is not always known in many problems, we need the agent to interact with the 
environment and gather information. Reinforcement learning methods use these information to 
infer the dynamics of the environment and estimate the model. 

One of the popular reinforcement learning methods, Q-learning algorithm, approximates the Q-
function which can be used by the agent to estimate the action-value at a state and construct the 
policy. Q-learning updates the approximation of the Q-function using the state, action, and reward 
experiences of an agent by interacting with the world continuously [Sutton and Barto, 2020]. 

2.3 Neural Network 

At the moment, one of the best tools we have to handle the unconstructed reinforcement model and 
function approximation is the neural networks. We use neural networks to approximate state-value 
function or the action-value function [Sutton and Barto, 2020]. A neural network consists of one 
input layer, one or more hidden layers, and one output layer. Each hidden layer has ������� that act 
like functions taking inputs from the previous layer and calculating an output; they send outputs 
to neurons to the next layer. The output layer outputs a prediction � for a given input � . Neural 
networks are trained to minimize a loss function calculated with � and � by adjusting the parameters 
of the functions (or neurons). 

For example, to approximate the state-value function, we can represent it as a parameterized 
functional from with some weight (or coefcient) � , then we can write �̂ (�,� ) ≈ �� (�) for the 
approximate value of state � given weight � . �̂ can be a linear function with � being the vector of 
weights. More generally, �̂ can be a function computed by a multi-layer neural network, or deep 
neural network since it has "deeper" layers, with � being the vector of connection weights in all 
layers [Sutton and Barto, 2020]. Neural networks try to construct the function that maps input 
state � to a output state-value by fnding the right weights. By adjusting the weights, all kinds of 
functions can be implemented by neural networks. 

2.4 Deep Reinforcement Learning and Deep Q Network (DQN) 

Deep reinforcement learning combines deep learning with reinforcement learning by using deep 
neural networks used as function approximators. [Sutton and Barto, 2020] Deep Q-Network (DQN) 
trains a Q-function approximator by minimizing the loss function with the current state of the 
environment as input and the predicted Q-value of taking diferent actions at the state as output. 
Over the course of the training, the agent will use the network to choose action and update its 
policy by inputting feedback from the environment [Mnih et al., 2013]. 
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5 Deep Reinforcement Learning for Open Multiagent System 

DQN also solves the problem of the high correlation of data fed into the neural network: instead of 
using the collected transition experiences immediately to train the network, they are stored in a 
bufer called experience replay. New experiences replace the old ones once the bufer is full, and 
the network now samples random minibatches of data from the bufer to train the network. If the 
network is updated with only transitions that are localized in a short time window, Q-function 
approximated will overft the recent situations. In experience replay, we sample transitions that 
occur anywhere across time to improve generalizability of the learned Q-values across all situations. 

2.5 Advantage Actor-Critic 

Another approach to solve the reinforcement learning problem is the policy search. This method uses 
a stochastic policy representations �� (�, �) which specifes the probability of selecting action � in 
state � . Planning with policy search is achieved by maximizing the objective function representing 
the sum of rewards generated by following the policy over some time steps, formally," # 

�∑ 
� (� ) = E� ∼�� [�(�)] = E�∼�� �� � (�� , �� , ��+1) (5) 

� =0 

where � is a sequence of state-action pairs generated by the policy [Russell and Norvig, 2010]. 

Using a neural network, we can approximate the objective function just like we approximate the 
Q-function in DQN. A commonly used objective estimator is:� �

ˆ��� (� ) = E� log �� (�� | �� ) �̂� (6) 

where �̂� is an estimator of the advantage function at time � [Russell and Norvig, 2010]. 

The Advantage of a state is defned as: 

�� (�, �) = �� (�, �) − � � (�) (7) 

where � is the current policy, �� (�, �) is the approximated Q-value, and � � 
is the approximated 

state-value, assuming policy � is being used forever; it is the diference between the estimated 
Q-value of the state by taking action � and the estimated state-value of that state. Intuitively, it 
indicates how many extra rewards than expected we are getting if we take action � based on the 
current policy. The higher the advantage is, the more likely the agent will take the action again 
when visiting the state. 

The problem with approximating the objective function using a neural network is that now we 
need to approximate both � and � functions, which are used to calculate the advantage for the 
objective estimator. 

The solution is the Advantage Actor-Critic method, which uses an actor-critic architecture for the 
network that has two sets of layers: the actor outputs the policy �� (the probabilities for taking 
each action) of the input state � , while the critic outputs the predicted state-value � (�) of the input 
state � . The state-value is then used to approximate the advantage �̂� for the objective estimator 
using the n-step advantage: 

�−1∑ 
�� = ����+�+1 + ��� � (�� +�+1) − � � (�� ) (8)� 

�=0 
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6 Tianxing Zhu 

During the training, the actor is updated by maximizing the objective estimator, and the critic 
is updated by minimizing the error between the estimated state-value and its actual value. To 
solve the issue of highly correlated data, Advantage Actor-Critic method uses multiprocessing to 
simulate several environments in parallel, that is, to use multiple processes to experience their own 
individual environment and collect experiences for training the network. Each process explores the 
environment diferently which diversify the data to improve generalizability [Mnih et al., 2016]. 

2.6 Proximal Policy Optimization (PPO) 

Proximal Policy Optimization is one of the state-of-the-art policy search algorithms. It replaces the 
traditional objective estimator with the following clipped surrogate objective: h � �i 

ˆ����� (� ) = E� min �� (� )�̂� , clip (�� (� ), 1 − �, 1 + �) �̂� (9) 

�� (�� |�� )
where �� (� ) is the probability ratio �� (� ) = 

��
old 
(�� |�� ) , � is the clipping parameter, and �̂� is an 

estimator of the advantage function at time � [Schulman et al., 2017]. 

Compared to traditional objective estimators, PPO’s clipped surrogate objective not only makes 
sure the policy update is not too dramatic by removing the incentives but also less sensitive to 
hyperparameter changes, which makes it fexible in dealing with a range of tasks and easy to tune. 

2.7 Generalized Advantage Estimation (GAE) 

Advantage estimator develops into diferent forms over the years. The one we are using is the 
Generalized Advantage Estimation (GAE): 

∞ ∞∑ ∑ 
GAE(�,�) 

�� �� � = (1 − �) = (��)� ��+� (10)� � 
� =0 � =0 

It is based on the n-step advantage (Eq. 8) introduced in the A2C paper [Wu et al., 2017]. The n-step 
advantage attempted to mitigate the bias vs. variance trade-of when exploring the environment. It 
basically uses � next immediate rewards and approximates the rest with the state-value of the state 
visited � steps later. The GAE is simply the discounted sum of all n-step advantages [Schulman 
et al., 2015]. 

3 PROBLEM 

We design our deep reinforcement learning method for an open multiagent system based on these 
previous works. We formulate our problem in the context of wildfre suppression [Chandrasekaran 
et al., 2016], where agents work together to put out fres of diferent sizes in diferent locations 
without any communication or prior coordination. This section will describe the environment we 
are dealing with in detail and why openness complicates the problem. 
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7 Deep Reinforcement Learning for Open Multiagent System 

3.1 Open Multiagent Systems 

As its name suggests, multiagent systems are the environments where multiple agents act in the 
environment and try to achieve their goals. Traditionally, multiagent system problems are solved 
with centralized or decentralized planning [Russell and Norvig, 2010]. Centralized planning occurs 
when a single planner chooses everyone’s policies, which requires replacing actions with joint 
actions in the MDP model while having the cost of growing exponentially larger as more agents are 
introduced; decentralized planning, on the other hand, requires each agent to model other agents’ 
reasoning, which needs more time and information that is not necessarily available to the planner. 

In open systems, however, the problem is further complicated by the need to track other agents’ 
presence and to understand only the present agents’ actions. For example, in the wildfre suppression 
problem, each agent needs to know whether other agents are fghting fres or absent from the 
environment to recharge the suppressant, so the agent can make the right decision and not waste 
their suppressant on fres that cannot be put out by one agent. 

3.2 Wildfire Domain 

We use the wildfre domain to simulate the open multiagent environment, and we divide the agents 
into frames. For each frame of agents, we defne the model ���� = ⟨�� , �� ,� , �, ⟩, where: 

• � is the frame that represents the agent’s capabilities; in the wildfre domain, this is essentially 
(1) the locations of the agents that limit the fres they can fght and (2) the type of frefghter 
(e.g., ground frefghter vs. helicopter), which represents the ability of the agent to put out 
fres. 

• �� is the set of possible states of an agent in frame � . In our problem, this is defned as 
�� = � × �� where � is the set of states of the environment represented by the set of intensity 
levels of all fres in the environment; and �� is the internal state of the agent. The internal 
state of an agent represents the level of its suppressant which can be consumed to fght fre. 

• �� is the set of possible actions of an agent in frame � . In the Wildfre domain, these are the 
individual fres that each agent can fght and the NOOP (no operation) action, which make 
them temporarily absent in the environment when they need to refll the suppressant. 

• � : �� × � → � (�� ) is the stochastic state transitions function which gives the new state � of 
the environment and the new internal state �� after taking action �. 

• � : � × � × � → R is the reward function that gives the reward of an agent after taking action 
� on state � . 

In the wildfre environment, each fre has fve levels of intensity from non-existent (0) to burned-out 
(4); fre intensity transitions stochastically based on the transition function. Generally, the intensity 
is likely to decrease when enough agents are fghting the fre, and increases or stays the same 
otherwise. Burned-out fres cannot be fought. Agents are equipped with a suppressant that takes on 
levels between empty (0) to full (2); each agent starts with a full suppressant that changes based on 
the transition function when the agent takes action. For each agent, the legal actions are: fghting 
an adjacent fre or taking a NOOP action; the NOOP action recharges the suppressant when it’s 
empty. Agents receive a shared reward or penalty when a fre is put out or burned out. Taking 
illegal actions also result in a penaly. Detailed description of the wildfre domain can be found in 
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8 Tianxing Zhu 

Individual Planning in Open and Typed Agent Systems [Chandrasekaran et al., 2016] and Scalable 
Decision-Theoretic Planning in Open and Typed Multiagent Systems [Eck et al., 2019]. 

4 SOLUTION 

With all the related work discussed, as well as our problem being formally formulated, we can now 
describe our solution in detail. As mentioned in the previous section, we are assigning agents in 
the environment into frames. This is because each frame is essentially solving a diferent MDP, and 
thus has a diferent optimal policy, so our solution involves training one actor-critic neural network 
that provides a policy and an estimation of the state-value for each frame so that the agents of 
that frame can use the network to make their decision. Instead of using the traditional multiagent 
system learning model, we are simplifying it into individual single-agent MDP models in each 
frame. Each neural network for each frame is thus trained to learn the best action to take at some 
state when the agent is in that frame. For future work, we want to work on the more challenging 
problem that uses a multiagent reinforcement learning model. 

4.1 Incorporating Openness 

The openness of the problem is incorporated into our model in two ways. First, a NOOP action is 
available for agents in all frames; an agent with no suppressant taking NOOP means the agent leaves 
the environment temporarily to recharge the suppressant, while an agent with suppressant taking 
NOOP means it is doing nothing (not fghting fres or recharging).The NOOP brings openness to 
the learning process. Secondly, the internal state, which represents the suppressant level of the 
agent, is included in the state representation. Therefore, a non-zero internal state means the agent 
is in the environment, and a zero internal state means the agent is unlikely to be in the environment 
due to short of suppressants; this should allow the neural network to learn the efect of the absence 
of the agent. 

4.2 Neural Network Architecture 

A neural network is set up for each frame to learn the optimal policy for the agents in the frame. 
Each neural network model has an actor-critic architecture which is discussed in the early section. 
The input to the neural network is the current state of the environment as in that frame, an 
(�� ��� + 1) × 1 array where �� ��� is a number of fres in the environment. The actor gives a 
distribution of possibilities over the possible actions, and the critic gives a state-value evaluating 
whether the input state is worth visiting. The two hidden linear layers for both the actor and the 
critic have a 64 output dimension, followed by a rectifer. The last linear layer for the actor has 
an �� + 1 output dimension, where �� is the number of individual fres that an agent in frame � 
can act on; and the output layer for the actor is a Softmax function that outputs a probability of 
distribution of the actions taken in the current state. This output is the stochastic policy for the 
agent. The last linear layer for the critic is fully-connected with a single output that predicts the 
state value � (�) of the input state. 

, Vol. 1, No. 1, Article . Publication date: April 2022. 



9 Deep Reinforcement Learning for Open Multiagent System 

4.3 Adapted Algorithms and Procedure 

We adapt proximal policy optimization in the actor-critic style. The advantage is calculated using 
the generalized advantage estimation. In reinforcement learning, an episode is defned as a sequence 
of interaction from the start time step to the fnal time step [Sutton and Barto, 2020]. The detailed 
procedure of our method is given below. 

Algorithm 1 Adapted Algorithm 

procedure Policy Optimization 
• Initialize the actor-critic network for each frame � 
• for each process � in parallel: 
– Get a copy of the actor and critic for each frame � 
– Reset the environment 
– Sample 

• Wait for all processes to terminate 
• for actor-critic network of each frame � : 
– Get the batch of experience pairs from all processes 
– Train 

procedure Sample 
• for each frame � : 
– Sample an episode of � steps by using the actor to choose actions for each agent 
– Collect the transition pairs (�����, ������, ������, ��_����) on each time step 
– Calculate the generalized advantage estimation (Eq. 10) for each transition using the critic 
– Return the experience pairs (�����, ������, ������, ��_����, ���������)

procedure Train 
• Randomize the experience pairs in the batch 
• Make minibatches of experience pairs of size � 
• for � epochs: 
– Get a minibatch of experience pairs 
– Reset gradient for the actor-critic network 
– Maximize the clipped surrogate objective (Eq. 9) for the actor 
– Minimize the clipped mean square error for the critic 
– Add entropy bonus 
– Update the actor and critic network 

5 EXPERIMENTS 

5.1 Setups 

In the Wildfre domain, agents in diferent frames are asked to put out fres of diferent sizes 
together without any prior coordination. Putting out small, medium, large, and huge fres provides 
agents with shared rewards of 20, 50, 125, 300, respectively, while a fre burning out results in a 
shared penalty of 1, choosing illegal actions (such as fghting a fre that is already put out) gives 
individual agent penalty of 100. 
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10 Tianxing Zhu 

Fig. 1. Setups. Our setups involve a varying number, sizes, and positions of fires, as well as a varying number 
of agents and their types. Fires require diferent units of suppressant to reduce. Ground firefighters apply 1 
unit, helicopters 2 units. 

Three diferent setups are available: Setup 1, where two frames of agents each have a unique 
small fre that they can individually engage with, and a shared medium fre that requires the 
collaboration of the two frames of agents. Setup 2 is a more complicated situation where all fres 
require collaboration. Finally, Setup 3 has even more intensifed fre while introducing diferent 
types of agents of diferent capabilities. Our experiments mostly focus on Setup 1 with one agent 
in each frame. We fx one agent’s policy to choose the optimal action all the time, so it is useful to 
test the behavior of the other agent when tuning the hyperparameters. 

5.2 Training Details and Hyperparameters 

In these experiments, we set up one neural network for each frame of agents to learn the optimal 
policy of that frame. Each neural network is optimized using the Adam optimizer [Kingma and Ba, 
2014] with a learning rate of 2.5� − 4. On each episode of the training, 8 processes simulate 15 steps 
for all gents in parallel in the Wildfre environment to collect transition experience. We choose 15 
steps for an episode because if the number of steps is too small, agents might not be interacting 
with the environment enough to learn meaningful experience; on the other hand, the number of 
steps being too big will lead to biased learning, which favors situations where all fres are burned 
out, or all fres are put out. 

Once all the processes fnish collecting experience over 15 steps, we prepare the experience into 
(�����, ������, ������, ��_����) pairs. For each episode, we will have 8 × 15 = 120 pairs; we then 
randomize the pairs and make minibatches of 15 pairs to avoid correlation between data that might 
bias the training. These minibatches are fed into the neural networks for training. 

For calculating loss for proximal policy optimization, we choose the following hyperparameters 
within the range suggested by the original paper [Schulman et al., 2017]: 

• � = 0.99, which is the discount factor that controls the value of future rewards when 
calculating advantages. 

• � = 0.95, which is the smoothing parameter that reduces the variance in training which 
makes it more stable. 

• � = 0.2, which is the clipping parameter that ensures the policy change does not exceed 0.2%. 
This is the recommended value in the paper. 

• �1 = 0.5, which is the value function coefcient. This is the recommended value in the paper. 
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• �2 = 0.01, which is the entropy coefcient. The entropy coefcient is multiplied by the 
maximum possible entropy and added to the loss. This helps prevent early convergence 
of one action probability dominating the policy and preventing exploration. This is the 
recommended value in the paper. 

Next, we discuss diferent strategies applied to improve the performance. We also compare diferent 
deep reinforcement learning methods, evaluate how state representations and reasoning models 
help analyze the training, and also how setting ��_���� fag (which forces the state-value to be 0) 
and randomizing experience before feeding into the neural network improve the performance. 

We measure the performance by the sum of rewards received by all the agents in the environment 
over 15 steps on each training episode. To simplify the discussion, we will focus on Setup 1 in these 
experiments, with the settings discussed above. The plots below all shows the performance of the 
agent during the training. 

5.2.1 Fixed Policy for One Frame. The frst strategy we use to better understand the performance 
of our method is fxing the policy of one agent to always choose the optimal action. This is because 
all the agents in the wildfre domain share their reward: if one agent receives a reward on some 
time step by putting out a fre, the other agent will get the same reward on that time step as well. 
This not only hinders us from understanding the actual performance of an agent but also might 
hinder the agent from learning the best action because the reward could be deceiving. By fxing 
the policy of one agent to be optimal, we are minimizing the efect of potentially deceiving reward, 
essentially testing the performance of one neural network. Thus, the fgures below will only plot the 
performance of � ����0 agent in Setup 1. 

5.2.2 Categorical State Representations. Our state representations, as we discussed earlier, are the 
set of fre intensity levels concatenated with the suppressant level of the agent. For example, state 
(2, 2, 2, 1) means that all fres have level 2 intensity, and the suppressant level of the agent is 1. As 
we can see, these values are all numeric. We apply a technique called one-hot encoding by making 
these values categorical by making each value of the fre intensity or suppressant level unique. For 
example, the frst 2 in the original state, which stands for the intensity of � ���0 = 2 becomes (0, 0, 1, 
0, 0), where the binary number at each position is 1 if and only if the fre intensity equal to that 
positional number. Then the entire state above becomes (0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1). 
In this way, we aim to increase the accuracy of the network since it becomes sensitive to all values, 
rather than assuming higher numbers are more important. In the case of wildfre suppression, it 
should help the agent learn that NOOP is also useful when the fre intensity is 0 since fghting a 
zero-intensity fre will be illegal. 

5.2.3 Training with Minibatches. After each process collects the transition pairs (or experiences) 
over 15 time steps in an episode, instead of directly feeding the batch into the neural network 
for training, we wait until all processes end and make new minibatches of randomized transition 
pairs for the neural network input. This is inspired by the DQN. The reason behind this is that 
experiences from the same batch are highly correlated, which might bias the training. For example, 
in an episode of our simulation, one process might be exploring how to put out the small fre, 
while another process might be exploring what to do after the small fre is put out. If we feed those 
experiences sequentially, the network will frst update the policy trying to fght the fre in all states, 
then go the other way since a penalty will be given when trying to fght a non-existent fre. By 
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training with sampled experiences from processes altogether instead of in sequence, we try to 
reduce the instability of the network. 

In Fig. 2, the x-axis represent training episode, the y-axis represent the sum of rewards on that 
episode (same for all fgures below). Therefore, each line represents the performance of the agent 
over time, and an increase in the performance means the agent is learning to act better in the 
environment. We can see that training with minibatches (green) increases the sum of rewards over 
time and converges around -100, while training without minibatches (blue) converges at a much 
lower number, around -300. 
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�����: Training with minibatches 
����: Training without minibatches 

Fig. 2. Comparison of training with vs. without minibatches. 

5.2.4 Seting the ��_���� Flag. The ��_���� fag functions as a mask for the state-value. If the fag 
is true (��_���� = 1), our method will force the state-value � (�) to be 0; otherwise, the state-value 
� (�) will be computed by the critics. A 0 state-value literally makes the state has zero value, which 
in turn tells the agent to visit the state as few times as possible during the training. Setting the fags 
for the right states will boost the learning speed since the fags will stop the agent from wasting 
time exploring the wrong states. 

Below we tested the performance based on three settings: (1) no ��_���� fags, (2) ��_���� = 1 if 
all the fres in the environment are burned out, and (3) ��_���� = 1 whenever one of the fres is 
burned out. We can clearly see, with other hyperparameters at the same setting, setting (3) gives 
the best performance. It makes sense because in this setting, agents will try to avoid visiting states 
with any burned-out fre that will bring penalties. In Fig. 3, we can see that the third setting (green), 
which set ��_���� = 1 whenever one of the fres is burned out, has a sum of rewards that converges 
to -100 over time, outperforming the other settings. 

5.2.5 Comparison of Methods. Finally, we compare the performance of using the loss function 
derived from the regular policy optimization algorithm and the clipped surrogate objective intro-
duced by the state-of-the-art PPO algorithm (Eq. 9). We can see in the fgure below that the PPO 
has a clear advantage over the regular method (explain fgure). When examining the policy during 
the training, we notice the policy, while using the regular method soon gets relatively deterministic 
(the most possible action has a probability over 99%) without sufcient exploration. PPO makes 
sure the deviation from the previous policy does not go too far when computing an update at each 
step that minimizes the cost function. 
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Fig. 3. Comparison of training with diferent ��_���� flag setings. 

In Fig. 4, we can see a clear diference between the performance of training with the proximal policy 
optimization (green) and with the regular policy optimization (pink). With PPO, the performance 
improves until sum of rewards hit around -100, while with the regular method, the agent barely 
learns even after a thousand episode. 
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Fig. 4. Comparison of training with regular policy optimization vs. training with PPO. 

5.3 Final Results 

We plot the performance of agents of each frame for all setups, using our adapted policy optimization 
method. In these fnal experiments, we train individual neural networks for each frame at the same 
time instead of fxing the policy of some frames. Since diferent setups has diferent numbers of 
frames, the number of lines (which represent the performance of a frame) is also diferent. 

From Fig. 5 to Fig. 8, We can observe that for all setups, the sum of rewards earned by agents in all 
frames converges to around −100 after over 500 training episodes. This means our neural networks 
for each frame are able to learn to take legal actions at almost every step after the training; because 
the penalty of taking one illegal action is −100, and the agents are able to put out zero or one fre 
most of the time, the sum of rewards of 15 steps being around −100 means most of the time they 
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Fig. 5. Final results of � ����0 agent 
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Fig. 6. Final results of � ����1 agent 
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Fig. 7. Final results of � ����2 agent 

are at least learn to take actions that do not punish them. When we take a look at each fgure, we 
can see that setup 1 (red) has the best performance, especially for � ����0 agent, whose sum of 
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Fig. 8. Final results of � ����3 agent 

rewards almost converges to 0, which means it rarely takes illegal actions. Setup 3 (green) shows 
the most unstable performance in all frames since it has the most complicated confguration of all 
setups. 

However, once the policy is good enough to fnd the legal actions in a state, it ceases to improve. 
When we examine the policy for each frame during the training, we see that the policy became 
relatively deterministic by choosing the same action NOOP for each state, which means it tends 
to choose NOOP on every step. This is because taking other actions are capable of resulting in 
a penalty, for example, trying to fght the fre not adjacent to the agent gives a penalty, or even 
when the agent starts to learn that putting out fre gives them reward, continue fghting the now 
non-existent fre will result in a penalty as well. However, always NOOP results in 0 reward, which 
is not bad for the agent consider exploring other action are more likely to result in penalties. 

This hinders the agent from learning actions that earn more reward in the long term than the 
"safety" actions. Since this is a sparse reward problem, where the big reward earned by putting out 
a fre requires the agent to fght the same fre several times to get the reward. The agent might quit 
fghting the fre before it is put out. Unfortunately, we are unable to improve our method further to 
overcome the problem and have the agents constantly earn positive rewards, but we have many 
insights into how to adapt the existing deep reinforcement learning method to open multiagent 
environments. 

6 CONCLUSION AND FUTURE WORK 

Real-world multiagent problems often involve openness, where agents may leave and join the 
environment over time. Simulation in the wildfre suppression problem shows that our adapted 
method based on the proximal policy optimization algorithm for open multiagent systems enables 
the agent to take legal actions in the environment almost without punishments. For future work, 
we plan to overcome the problem that agents stop learning once the safety actions are learned; we 
also plan to incorporate a multiagent model into the method instead of training individual models 
for each frame. 
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