
Oberlin Oberlin

Digital Commons at Oberlin Digital Commons at Oberlin

Honors Papers Student Work

2022

Deep Reinforcement Learning for Open Multiagent System Deep Reinforcement Learning for Open Multiagent System

Tianxing Zhu
Oberlin College

Follow this and additional works at: https://digitalcommons.oberlin.edu/honors

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Zhu, Tianxing, "Deep Reinforcement Learning for Open Multiagent System" (2022). Honors Papers. 845.
https://digitalcommons.oberlin.edu/honors/845

This Thesis - Open Access is brought to you for free and open access by the Student Work at Digital Commons at
Oberlin. It has been accepted for inclusion in Honors Papers by an authorized administrator of Digital Commons at
Oberlin. For more information, please contact megan.mitchell@oberlin.edu.

https://digitalcommons.oberlin.edu/
https://digitalcommons.oberlin.edu/honors
https://digitalcommons.oberlin.edu/students
https://digitalcommons.oberlin.edu/honors?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F845&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.oberlin.edu/honors/845?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F845&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:megan.mitchell@oberlin.edu

Deep Reinforcement Learning for Open Multiagent System

TIANXING ZHU, Oberlin College, USA

In open multiagent systems, multiple agents work together or compete to reach the goal while members of
the group change over time. For example, intelligent robots that are collaborating to put out wildfres may
run out of suppressants and have to leave the place to recharge; the rest of the robots may need to change
their behaviors accordingly to better control the fres. Thus, openness requires agents not only to predict
the behaviors of others, but also the presence of other agents. We present a deep reinforcement learning
method that adapts the proximal policy optimization algorithm to learn the optimal actions of an agent in
open multiagent environments. We demonstrate how openness can be incorporated into state-of-the-art
reinforcement learning algorithms. Simulations of wildfre suppression problems show that our approach
enables the agents to learn the legal actions.

CCS Concepts: • Computing methodologies → Multi-agent reinforcement learning; Planning and
scheduling; Markov decision processes.

Additional Key Words and Phrases: multiagent systems, open environment, deep reinforcement learning,
neural networks

ACM Reference Format:

Tianxing Zhu. 2022. Deep Reinforcement Learning for Open Multiagent System. 1, 1 (April 2022), 16 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Multiagent systems consist of multiple intelligent agents (computational entities) that are interacting
with the environment they are in [Shoham and Leyton-Brown, 2009]. In multiagent systems,
reasoning about others’ behaviors will make collaboration of artifcial intelligence possible and
reach the shared goal faster. However, many real-world environments involve openness where
individual agents join or leave the environment over time, which makes decision-making especially
challenging, because now agents not only need to understand other agents’ actions to make good
decisions, but also need to predict the presence of them before reasoning their behaviors. For
example, in the case of self-driving cars, the total number of intelligent cars (agents) is fxed, but
the number of them at a specifc location changes over time. Even if individual cars can learn from
others’ behavior to help them analyze the trafc at the location, openness requires them to predict

Author’s address: Tianxing Zhu, vzhu@oberlin.edu, Oberlin College, 135 W Lorain Street, Oberlin, Ohio, USA, 44074.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for proft or commercial advantage and that copies bear this notice and
the full citation on the frst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specifc permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
XXXX-XXXX/2022/4-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: April 2022.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
mailto:permissions@acm.org
mailto:vzhu@oberlin.edu

2 Tianxing Zhu

whether others are present at the location in the frst place. Trying to understand cars that are
not present in the environment will result in inaccurate knowledge, which leads to non-optimal
decisions.

In this paper, we focus on using reinforcement learning to learn how to make optimal decisions
in open environments? The openness of the environment allows agents to be active or inactive
in the environment over time; for real-world environments such as wildfre suppression, agents
need to put out diferent scales of fres together while joining or leaving the area to refll the
suppressants. We aim to make agents not only learn what actions to take to efciently put out the
fres, but also how to distribute their extinguishing power within a dynamic group. Previous work
has focused on planning solution that uses a Monte Carlo tree search algorithm [Eck et al., 2019].
However, a planning solution requires the agent to have enough information of the system before
they make the plan, and a lot of information might not be immediately available. A reinforcement
learning solution uses the actual experience of the agent from its interaction with the environment
to improve its understanding of the environment over time.

We propose a deep reinforcement learning approach to train the agents to reason in these situations.
By adapting proximal policy optimization [Schulman et al., 2017], a state-of-the-art single-agent
reinforcement learning algorithm, we bring its advantage in balancing exploration and exploitation,
as well as the ease of hyperparameters tuning into multiagent systems. To promote learning of
the dynamic caused by the openness of the environment, we incorporate the internal state of the
agent, which gives a clue to the agent’s presence in our state representation of the environment.

Our results show that in the simulation of the wildfre suppression problem [Chandrasekaran
et al., 2016], our method enables agents to choose the legal actions that do not result in penalties
on almost every time step. Further experiments demonstrate the advantages of our adaptations
in both learning speed and performance compared to other regular deep reinforcement learning
algorithms.

In the following sections, we will overview the background and related work, starting from the
basics of reinforcement learning to the state-of-the-art proximal policy optimization algorithm
for deep reinforcement learning. Then we will formulate our problem in the context of deep
reinforcement learning and introduce our methods in detail. Finally, in the experiments section, we
will talk about the strategies we used to tune the hyperparameters, followed our fnal results. We
conclude by summarizing our work and propose promising directions for future work.

2 BACKGROUND

2.1 Reinforcement Learning and MDP

Reinforcement learning, as its name suggests, is learning by receiving reinforcement or reward. In the
feld of artifcial intelligence, we defne an agent as anything that perceives its environment through
interaction with the environment. At each time step, the agent interacts with the environment
by performing an action in the current state of the environment and receives feedback from the
environment. The feedback received by the agent is the reward, which provides a direct evaluation
on the quality of the agent’s behavior. The state of the environment changes due to the action. At
the next time step, the agent takes another action and receives another reward, and so forth. An

, Vol. 1, No. 1, Article . Publication date: April 2022.

3 Deep Reinforcement Learning for Open Multiagent System

intelligent agent learns to maximize the reward by trial and error [Russell and Norvig, 2010]. For
example, in the wildfre suppression environment, the frefghters are the agents. At every time
step, the state of the environment could be represented by the set of fre intensities of each fre.
Each agent chooses an action to perform, such as fghting one of the fre or reflling its suppressant.
The environment then immediately gives a reward to the agent; a high reward might be given
when a fre is put out, while a penalty (negative reward) might be given when a fre is burned out.
The action afects the state of the environment, and thus the state changes.

We use a Markov Decision Process (MDP) to describe these sequential decision problems. Formally,
an MDP consists of:

• � , the set of all possible states � of the environment.
• �, the set of all actions �.
• � : � × � → � (�), the stochastic transition model, which gives the probability of arriving at a

′
state � after taking action � at a state � , or � (� ′ |�, �).

• � : � × � × � → R, the reward function, which gives the reward obtained after taking action
� in state � and arriving at state � ′ , or � (�, �, � ′).

A policy is the decision-making mechanism used by the agent to decide which action to take in a
given state. A stochastic policy, formally, � : � → � (�) defnes the probability of performing each
action at a given state; while a deterministic policy, formally, � : � → � maps an action to a state,
which means the agent will always take the same action at a given state. The policy acts as the
brain of the agent. In reinforcement learning problems where agents have to learn how to act, It is
crucial to have a stochastic policy so the agent can explore the environment by trying out diferent
actions at a state rather than simply repeating the frst action that seems promising.

An optimal policy is the policy that maximize the utility of the agent. Utility represents the combi-

nation of immediate reward (given by the reward function) and long-term reward. We use a utility
function to balance them, formally,

�∑
� � (�0) = �� � (�� , � (��) , ��+1) (1)

�=0

where � is the horizon representing the maximum time step, and � ∈ (0, 1] is the discount factor
that controls how much we weight the future rewards [Russell and Norvig, 2010].

2.2 Bellman Equation and Q-Learning

To use our MDP model to improve the policy, or planning in the environment, we use the Bellman
Equation: ∑

� (�� , �) = � (�� , �, �� +1) [� (�� , �, �� +1) + � ∗ � (�� +1)] (2)
�� +1 ∈�

� (�) = max � (�, �) (3)

� ∈�

� (�) = argmax� (�, �) (4)
� ∈�

, Vol. 1, No. 1, Article . Publication date: April 2022.

4 Tianxing Zhu

The V-function � (�), or the state-value function, measures the expected future utility (Eq. 1), which
means it tells us how good or bad the current state � is following the current policy. The Q-function
� (�, �), or the action-value function (Eq. 2), defnes the value of taking action � in the state � under
the current policy [Russell and Norvig, 2010]. The Bellman Equation shows that the value of taking
action � at state � can be decomposed into two parts, the immediate reward plus the discounted
future utility recursively.

When we have access to a complete MDP model (we know �, �,� , �), we can apply the Bellman
Equation directly to exploit it and fnd a good policy. However, the transition function � and the
reward function � is not always known in many problems, we need the agent to interact with the
environment and gather information. Reinforcement learning methods use these information to
infer the dynamics of the environment and estimate the model.

One of the popular reinforcement learning methods, Q-learning algorithm, approximates the Q-
function which can be used by the agent to estimate the action-value at a state and construct the
policy. Q-learning updates the approximation of the Q-function using the state, action, and reward
experiences of an agent by interacting with the world continuously [Sutton and Barto, 2020].

2.3 Neural Network

At the moment, one of the best tools we have to handle the unconstructed reinforcement model and
function approximation is the neural networks. We use neural networks to approximate state-value
function or the action-value function [Sutton and Barto, 2020]. A neural network consists of one
input layer, one or more hidden layers, and one output layer. Each hidden layer has ������� that act
like functions taking inputs from the previous layer and calculating an output; they send outputs
to neurons to the next layer. The output layer outputs a prediction � for a given input � . Neural
networks are trained to minimize a loss function calculated with � and � by adjusting the parameters
of the functions (or neurons).

For example, to approximate the state-value function, we can represent it as a parameterized
functional from with some weight (or coefcient) � , then we can write �̂ (�,�) ≈ �� (�) for the
approximate value of state � given weight � . �̂ can be a linear function with � being the vector of
weights. More generally, �̂ can be a function computed by a multi-layer neural network, or deep
neural network since it has "deeper" layers, with � being the vector of connection weights in all
layers [Sutton and Barto, 2020]. Neural networks try to construct the function that maps input
state � to a output state-value by fnding the right weights. By adjusting the weights, all kinds of
functions can be implemented by neural networks.

2.4 Deep Reinforcement Learning and Deep Q Network (DQN)

Deep reinforcement learning combines deep learning with reinforcement learning by using deep
neural networks used as function approximators. [Sutton and Barto, 2020] Deep Q-Network (DQN)
trains a Q-function approximator by minimizing the loss function with the current state of the
environment as input and the predicted Q-value of taking diferent actions at the state as output.
Over the course of the training, the agent will use the network to choose action and update its
policy by inputting feedback from the environment [Mnih et al., 2013].

, Vol. 1, No. 1, Article . Publication date: April 2022.

5 Deep Reinforcement Learning for Open Multiagent System

DQN also solves the problem of the high correlation of data fed into the neural network: instead of
using the collected transition experiences immediately to train the network, they are stored in a
bufer called experience replay. New experiences replace the old ones once the bufer is full, and
the network now samples random minibatches of data from the bufer to train the network. If the
network is updated with only transitions that are localized in a short time window, Q-function
approximated will overft the recent situations. In experience replay, we sample transitions that
occur anywhere across time to improve generalizability of the learned Q-values across all situations.

2.5 Advantage Actor-Critic

Another approach to solve the reinforcement learning problem is the policy search. This method uses
a stochastic policy representations �� (�, �) which specifes the probability of selecting action � in
state � . Planning with policy search is achieved by maximizing the objective function representing
the sum of rewards generated by following the policy over some time steps, formally," #

�∑
� (�) = E� ∼�� [�(�)] = E�∼�� �� � (�� , �� , ��+1) (5)

� =0

where � is a sequence of state-action pairs generated by the policy [Russell and Norvig, 2010].

Using a neural network, we can approximate the objective function just like we approximate the
Q-function in DQN. A commonly used objective estimator is:� �

ˆ��� (�) = E� log �� (�� | ��) �̂� (6)

where �̂� is an estimator of the advantage function at time � [Russell and Norvig, 2010].

The Advantage of a state is defned as:

�� (�, �) = �� (�, �) − � � (�) (7)

where � is the current policy, �� (�, �) is the approximated Q-value, and � �
is the approximated

state-value, assuming policy � is being used forever; it is the diference between the estimated
Q-value of the state by taking action � and the estimated state-value of that state. Intuitively, it
indicates how many extra rewards than expected we are getting if we take action � based on the
current policy. The higher the advantage is, the more likely the agent will take the action again
when visiting the state.

The problem with approximating the objective function using a neural network is that now we
need to approximate both � and � functions, which are used to calculate the advantage for the
objective estimator.

The solution is the Advantage Actor-Critic method, which uses an actor-critic architecture for the
network that has two sets of layers: the actor outputs the policy �� (the probabilities for taking
each action) of the input state � , while the critic outputs the predicted state-value � (�) of the input
state � . The state-value is then used to approximate the advantage �̂� for the objective estimator
using the n-step advantage:

�−1∑
�� = ����+�+1 + ��� � (�� +�+1) − � � (��) (8)�

�=0

, Vol. 1, No. 1, Article . Publication date: April 2022.

6 Tianxing Zhu

During the training, the actor is updated by maximizing the objective estimator, and the critic
is updated by minimizing the error between the estimated state-value and its actual value. To
solve the issue of highly correlated data, Advantage Actor-Critic method uses multiprocessing to
simulate several environments in parallel, that is, to use multiple processes to experience their own
individual environment and collect experiences for training the network. Each process explores the
environment diferently which diversify the data to improve generalizability [Mnih et al., 2016].

2.6 Proximal Policy Optimization (PPO)

Proximal Policy Optimization is one of the state-of-the-art policy search algorithms. It replaces the
traditional objective estimator with the following clipped surrogate objective: h � �i

ˆ����� (�) = E� min �� (�)�̂� , clip (�� (�), 1 − �, 1 + �) �̂� (9)

�� (�� |��)
where �� (�) is the probability ratio �� (�) =

��
old
(�� |��) , � is the clipping parameter, and �̂� is an

estimator of the advantage function at time � [Schulman et al., 2017].

Compared to traditional objective estimators, PPO’s clipped surrogate objective not only makes
sure the policy update is not too dramatic by removing the incentives but also less sensitive to
hyperparameter changes, which makes it fexible in dealing with a range of tasks and easy to tune.

2.7 Generalized Advantage Estimation (GAE)

Advantage estimator develops into diferent forms over the years. The one we are using is the
Generalized Advantage Estimation (GAE):

∞ ∞∑ ∑
GAE(�,�)

�� �� � = (1 − �) = (��)� ��+� (10)� �
� =0 � =0

It is based on the n-step advantage (Eq. 8) introduced in the A2C paper [Wu et al., 2017]. The n-step
advantage attempted to mitigate the bias vs. variance trade-of when exploring the environment. It
basically uses � next immediate rewards and approximates the rest with the state-value of the state
visited � steps later. The GAE is simply the discounted sum of all n-step advantages [Schulman
et al., 2015].

3 PROBLEM

We design our deep reinforcement learning method for an open multiagent system based on these
previous works. We formulate our problem in the context of wildfre suppression [Chandrasekaran
et al., 2016], where agents work together to put out fres of diferent sizes in diferent locations
without any communication or prior coordination. This section will describe the environment we
are dealing with in detail and why openness complicates the problem.

, Vol. 1, No. 1, Article . Publication date: April 2022.

7 Deep Reinforcement Learning for Open Multiagent System

3.1 Open Multiagent Systems

As its name suggests, multiagent systems are the environments where multiple agents act in the
environment and try to achieve their goals. Traditionally, multiagent system problems are solved
with centralized or decentralized planning [Russell and Norvig, 2010]. Centralized planning occurs
when a single planner chooses everyone’s policies, which requires replacing actions with joint
actions in the MDP model while having the cost of growing exponentially larger as more agents are
introduced; decentralized planning, on the other hand, requires each agent to model other agents’
reasoning, which needs more time and information that is not necessarily available to the planner.

In open systems, however, the problem is further complicated by the need to track other agents’
presence and to understand only the present agents’ actions. For example, in the wildfre suppression
problem, each agent needs to know whether other agents are fghting fres or absent from the
environment to recharge the suppressant, so the agent can make the right decision and not waste
their suppressant on fres that cannot be put out by one agent.

3.2 Wildfire Domain

We use the wildfre domain to simulate the open multiagent environment, and we divide the agents
into frames. For each frame of agents, we defne the model ���� = ⟨�� , �� ,� , �, ⟩, where:

• � is the frame that represents the agent’s capabilities; in the wildfre domain, this is essentially
(1) the locations of the agents that limit the fres they can fght and (2) the type of frefghter
(e.g., ground frefghter vs. helicopter), which represents the ability of the agent to put out
fres.

• �� is the set of possible states of an agent in frame � . In our problem, this is defned as
�� = � × �� where � is the set of states of the environment represented by the set of intensity
levels of all fres in the environment; and �� is the internal state of the agent. The internal
state of an agent represents the level of its suppressant which can be consumed to fght fre.

• �� is the set of possible actions of an agent in frame � . In the Wildfre domain, these are the
individual fres that each agent can fght and the NOOP (no operation) action, which make
them temporarily absent in the environment when they need to refll the suppressant.

• � : �� × � → � (��) is the stochastic state transitions function which gives the new state � of
the environment and the new internal state �� after taking action �.

• � : � × � × � → R is the reward function that gives the reward of an agent after taking action
� on state � .

In the wildfre environment, each fre has fve levels of intensity from non-existent (0) to burned-out
(4); fre intensity transitions stochastically based on the transition function. Generally, the intensity
is likely to decrease when enough agents are fghting the fre, and increases or stays the same
otherwise. Burned-out fres cannot be fought. Agents are equipped with a suppressant that takes on
levels between empty (0) to full (2); each agent starts with a full suppressant that changes based on
the transition function when the agent takes action. For each agent, the legal actions are: fghting
an adjacent fre or taking a NOOP action; the NOOP action recharges the suppressant when it’s
empty. Agents receive a shared reward or penalty when a fre is put out or burned out. Taking
illegal actions also result in a penaly. Detailed description of the wildfre domain can be found in

, Vol. 1, No. 1, Article . Publication date: April 2022.

8 Tianxing Zhu

Individual Planning in Open and Typed Agent Systems [Chandrasekaran et al., 2016] and Scalable
Decision-Theoretic Planning in Open and Typed Multiagent Systems [Eck et al., 2019].

4 SOLUTION

With all the related work discussed, as well as our problem being formally formulated, we can now
describe our solution in detail. As mentioned in the previous section, we are assigning agents in
the environment into frames. This is because each frame is essentially solving a diferent MDP, and
thus has a diferent optimal policy, so our solution involves training one actor-critic neural network
that provides a policy and an estimation of the state-value for each frame so that the agents of
that frame can use the network to make their decision. Instead of using the traditional multiagent
system learning model, we are simplifying it into individual single-agent MDP models in each
frame. Each neural network for each frame is thus trained to learn the best action to take at some
state when the agent is in that frame. For future work, we want to work on the more challenging
problem that uses a multiagent reinforcement learning model.

4.1 Incorporating Openness

The openness of the problem is incorporated into our model in two ways. First, a NOOP action is
available for agents in all frames; an agent with no suppressant taking NOOP means the agent leaves
the environment temporarily to recharge the suppressant, while an agent with suppressant taking
NOOP means it is doing nothing (not fghting fres or recharging).The NOOP brings openness to
the learning process. Secondly, the internal state, which represents the suppressant level of the
agent, is included in the state representation. Therefore, a non-zero internal state means the agent
is in the environment, and a zero internal state means the agent is unlikely to be in the environment
due to short of suppressants; this should allow the neural network to learn the efect of the absence
of the agent.

4.2 Neural Network Architecture

A neural network is set up for each frame to learn the optimal policy for the agents in the frame.
Each neural network model has an actor-critic architecture which is discussed in the early section.
The input to the neural network is the current state of the environment as in that frame, an
(�� ��� + 1) × 1 array where �� ��� is a number of fres in the environment. The actor gives a
distribution of possibilities over the possible actions, and the critic gives a state-value evaluating
whether the input state is worth visiting. The two hidden linear layers for both the actor and the
critic have a 64 output dimension, followed by a rectifer. The last linear layer for the actor has
an �� + 1 output dimension, where �� is the number of individual fres that an agent in frame �
can act on; and the output layer for the actor is a Softmax function that outputs a probability of
distribution of the actions taken in the current state. This output is the stochastic policy for the
agent. The last linear layer for the critic is fully-connected with a single output that predicts the
state value � (�) of the input state.

, Vol. 1, No. 1, Article . Publication date: April 2022.

9 Deep Reinforcement Learning for Open Multiagent System

4.3 Adapted Algorithms and Procedure

We adapt proximal policy optimization in the actor-critic style. The advantage is calculated using
the generalized advantage estimation. In reinforcement learning, an episode is defned as a sequence
of interaction from the start time step to the fnal time step [Sutton and Barto, 2020]. The detailed
procedure of our method is given below.

Algorithm 1 Adapted Algorithm

procedure Policy Optimization
• Initialize the actor-critic network for each frame �
• for each process � in parallel:
– Get a copy of the actor and critic for each frame �
– Reset the environment
– Sample

• Wait for all processes to terminate
• for actor-critic network of each frame � :
– Get the batch of experience pairs from all processes
– Train

procedure Sample
• for each frame � :
– Sample an episode of � steps by using the actor to choose actions for each agent
– Collect the transition pairs (�����, ������, ������, ��_����) on each time step
– Calculate the generalized advantage estimation (Eq. 10) for each transition using the critic
– Return the experience pairs (�����, ������, ������, ��_����, ���������)

procedure Train
• Randomize the experience pairs in the batch
• Make minibatches of experience pairs of size �
• for � epochs:
– Get a minibatch of experience pairs
– Reset gradient for the actor-critic network
– Maximize the clipped surrogate objective (Eq. 9) for the actor
– Minimize the clipped mean square error for the critic
– Add entropy bonus
– Update the actor and critic network

5 EXPERIMENTS

5.1 Setups

In the Wildfre domain, agents in diferent frames are asked to put out fres of diferent sizes
together without any prior coordination. Putting out small, medium, large, and huge fres provides
agents with shared rewards of 20, 50, 125, 300, respectively, while a fre burning out results in a
shared penalty of 1, choosing illegal actions (such as fghting a fre that is already put out) gives
individual agent penalty of 100.

, Vol. 1, No. 1, Article . Publication date: April 2022.

10 Tianxing Zhu

Fig. 1. Setups. Our setups involve a varying number, sizes, and positions of fires, as well as a varying number
of agents and their types. Fires require diferent units of suppressant to reduce. Ground firefighters apply 1
unit, helicopters 2 units.

Three diferent setups are available: Setup 1, where two frames of agents each have a unique
small fre that they can individually engage with, and a shared medium fre that requires the
collaboration of the two frames of agents. Setup 2 is a more complicated situation where all fres
require collaboration. Finally, Setup 3 has even more intensifed fre while introducing diferent
types of agents of diferent capabilities. Our experiments mostly focus on Setup 1 with one agent
in each frame. We fx one agent’s policy to choose the optimal action all the time, so it is useful to
test the behavior of the other agent when tuning the hyperparameters.

5.2 Training Details and Hyperparameters

In these experiments, we set up one neural network for each frame of agents to learn the optimal
policy of that frame. Each neural network is optimized using the Adam optimizer [Kingma and Ba,
2014] with a learning rate of 2.5� − 4. On each episode of the training, 8 processes simulate 15 steps
for all gents in parallel in the Wildfre environment to collect transition experience. We choose 15
steps for an episode because if the number of steps is too small, agents might not be interacting
with the environment enough to learn meaningful experience; on the other hand, the number of
steps being too big will lead to biased learning, which favors situations where all fres are burned
out, or all fres are put out.

Once all the processes fnish collecting experience over 15 steps, we prepare the experience into
(�����, ������, ������, ��_����) pairs. For each episode, we will have 8 × 15 = 120 pairs; we then
randomize the pairs and make minibatches of 15 pairs to avoid correlation between data that might
bias the training. These minibatches are fed into the neural networks for training.

For calculating loss for proximal policy optimization, we choose the following hyperparameters
within the range suggested by the original paper [Schulman et al., 2017]:

• � = 0.99, which is the discount factor that controls the value of future rewards when
calculating advantages.

• � = 0.95, which is the smoothing parameter that reduces the variance in training which
makes it more stable.

• � = 0.2, which is the clipping parameter that ensures the policy change does not exceed 0.2%.
This is the recommended value in the paper.

• �1 = 0.5, which is the value function coefcient. This is the recommended value in the paper.

, Vol. 1, No. 1, Article . Publication date: April 2022.

11 Deep Reinforcement Learning for Open Multiagent System

• �2 = 0.01, which is the entropy coefcient. The entropy coefcient is multiplied by the
maximum possible entropy and added to the loss. This helps prevent early convergence
of one action probability dominating the policy and preventing exploration. This is the
recommended value in the paper.

Next, we discuss diferent strategies applied to improve the performance. We also compare diferent
deep reinforcement learning methods, evaluate how state representations and reasoning models
help analyze the training, and also how setting ��_���� fag (which forces the state-value to be 0)
and randomizing experience before feeding into the neural network improve the performance.

We measure the performance by the sum of rewards received by all the agents in the environment
over 15 steps on each training episode. To simplify the discussion, we will focus on Setup 1 in these
experiments, with the settings discussed above. The plots below all shows the performance of the
agent during the training.

5.2.1 Fixed Policy for One Frame. The frst strategy we use to better understand the performance
of our method is fxing the policy of one agent to always choose the optimal action. This is because
all the agents in the wildfre domain share their reward: if one agent receives a reward on some
time step by putting out a fre, the other agent will get the same reward on that time step as well.
This not only hinders us from understanding the actual performance of an agent but also might
hinder the agent from learning the best action because the reward could be deceiving. By fxing
the policy of one agent to be optimal, we are minimizing the efect of potentially deceiving reward,
essentially testing the performance of one neural network. Thus, the fgures below will only plot the
performance of � ����0 agent in Setup 1.

5.2.2 Categorical State Representations. Our state representations, as we discussed earlier, are the
set of fre intensity levels concatenated with the suppressant level of the agent. For example, state
(2, 2, 2, 1) means that all fres have level 2 intensity, and the suppressant level of the agent is 1. As
we can see, these values are all numeric. We apply a technique called one-hot encoding by making
these values categorical by making each value of the fre intensity or suppressant level unique. For
example, the frst 2 in the original state, which stands for the intensity of � ���0 = 2 becomes (0, 0, 1,
0, 0), where the binary number at each position is 1 if and only if the fre intensity equal to that
positional number. Then the entire state above becomes (0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1).
In this way, we aim to increase the accuracy of the network since it becomes sensitive to all values,
rather than assuming higher numbers are more important. In the case of wildfre suppression, it
should help the agent learn that NOOP is also useful when the fre intensity is 0 since fghting a
zero-intensity fre will be illegal.

5.2.3 Training with Minibatches. After each process collects the transition pairs (or experiences)
over 15 time steps in an episode, instead of directly feeding the batch into the neural network
for training, we wait until all processes end and make new minibatches of randomized transition
pairs for the neural network input. This is inspired by the DQN. The reason behind this is that
experiences from the same batch are highly correlated, which might bias the training. For example,
in an episode of our simulation, one process might be exploring how to put out the small fre,
while another process might be exploring what to do after the small fre is put out. If we feed those
experiences sequentially, the network will frst update the policy trying to fght the fre in all states,
then go the other way since a penalty will be given when trying to fght a non-existent fre. By

, Vol. 1, No. 1, Article . Publication date: April 2022.

12 Tianxing Zhu

training with sampled experiences from processes altogether instead of in sequence, we try to
reduce the instability of the network.

In Fig. 2, the x-axis represent training episode, the y-axis represent the sum of rewards on that
episode (same for all fgures below). Therefore, each line represents the performance of the agent
over time, and an increase in the performance means the agent is learning to act better in the
environment. We can see that training with minibatches (green) increases the sum of rewards over
time and converges around -100, while training without minibatches (blue) converges at a much
lower number, around -300.

-650

-600

-550

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

-100 0 100 200 300 400 500 600 700 800 900 1k 1.1k 1.2k
�����: Training with minibatches
����: Training without minibatches

Fig. 2. Comparison of training with vs. without minibatches.

5.2.4 Seting the ��_���� Flag. The ��_���� fag functions as a mask for the state-value. If the fag
is true (��_���� = 1), our method will force the state-value � (�) to be 0; otherwise, the state-value
� (�) will be computed by the critics. A 0 state-value literally makes the state has zero value, which
in turn tells the agent to visit the state as few times as possible during the training. Setting the fags
for the right states will boost the learning speed since the fags will stop the agent from wasting
time exploring the wrong states.

Below we tested the performance based on three settings: (1) no ��_���� fags, (2) ��_���� = 1 if
all the fres in the environment are burned out, and (3) ��_���� = 1 whenever one of the fres is
burned out. We can clearly see, with other hyperparameters at the same setting, setting (3) gives
the best performance. It makes sense because in this setting, agents will try to avoid visiting states
with any burned-out fre that will bring penalties. In Fig. 3, we can see that the third setting (green),
which set ��_���� = 1 whenever one of the fres is burned out, has a sum of rewards that converges
to -100 over time, outperforming the other settings.

5.2.5 Comparison of Methods. Finally, we compare the performance of using the loss function
derived from the regular policy optimization algorithm and the clipped surrogate objective intro-
duced by the state-of-the-art PPO algorithm (Eq. 9). We can see in the fgure below that the PPO
has a clear advantage over the regular method (explain fgure). When examining the policy during
the training, we notice the policy, while using the regular method soon gets relatively deterministic
(the most possible action has a probability over 99%) without sufcient exploration. PPO makes
sure the deviation from the previous policy does not go too far when computing an update at each
step that minimizes the cost function.

, Vol. 1, No. 1, Article . Publication date: April 2022.

13 Deep Reinforcement Learning for Open Multiagent System

-800
-700
-600
-500
-400
-300
-200
-100

0

-100 0 100 200 300 400 500 600 700 800 900 1k 1.1k
�����: ��_���� = 1 whenever one of the fres is burned out
���� : ��_���� = 1 if all the fres in the environment are burned out

������: no ��_���� fags

Fig. 3. Comparison of training with diferent ��_���� flag setings.

In Fig. 4, we can see a clear diference between the performance of training with the proximal policy
optimization (green) and with the regular policy optimization (pink). With PPO, the performance
improves until sum of rewards hit around -100, while with the regular method, the agent barely
learns even after a thousand episode.

-800
-700
-600
-500
-400
-300
-200
-100

0
100

-200 0 200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k
�����: Training with proximal policy optimization
���� : Training with regular policy optimization

Fig. 4. Comparison of training with regular policy optimization vs. training with PPO.

5.3 Final Results

We plot the performance of agents of each frame for all setups, using our adapted policy optimization
method. In these fnal experiments, we train individual neural networks for each frame at the same
time instead of fxing the policy of some frames. Since diferent setups has diferent numbers of
frames, the number of lines (which represent the performance of a frame) is also diferent.

From Fig. 5 to Fig. 8, We can observe that for all setups, the sum of rewards earned by agents in all
frames converges to around −100 after over 500 training episodes. This means our neural networks
for each frame are able to learn to take legal actions at almost every step after the training; because
the penalty of taking one illegal action is −100, and the agents are able to put out zero or one fre
most of the time, the sum of rewards of 15 steps being around −100 means most of the time they

, Vol. 1, No. 1, Article . Publication date: April 2022.

14 Tianxing Zhu

-1e+3
-900
-800
-700
-600
-500
-400
-300
-200
-100

0
100

-50 0 50 100 150 200 250 300 350 400 450 500 550
��� : Setup 1
���� : Setup 2
�����: Setup 3

Fig. 5. Final results of � ����0 agent

-900
-800
-700
-600
-500
-400
-300
-200
-100

0
100

-50 0 50 100 150 200 250 300 350 400 450 500 550
��� : Setup 1
���� : Setup 2
�����: Setup 3

Fig. 6. Final results of � ����1 agent

-1e+3
-900
-800
-700
-600
-500
-400
-300
-200
-100

0
100

-50 0 50 100 150 200 250 300 350 400 450 500 550
���� : Setup 2
�����: Setup 3

Fig. 7. Final results of � ����2 agent

are at least learn to take actions that do not punish them. When we take a look at each fgure, we
can see that setup 1 (red) has the best performance, especially for � ����0 agent, whose sum of

, Vol. 1, No. 1, Article . Publication date: April 2022.

15 Deep Reinforcement Learning for Open Multiagent System

-1e+3
-900
-800
-700
-600
-500
-400
-300
-200
-100

0
100

-50 0 50 100 150 200 250 300 350 400 450 500 550

�����: Setup 3

Fig. 8. Final results of � ����3 agent

rewards almost converges to 0, which means it rarely takes illegal actions. Setup 3 (green) shows
the most unstable performance in all frames since it has the most complicated confguration of all
setups.

However, once the policy is good enough to fnd the legal actions in a state, it ceases to improve.
When we examine the policy for each frame during the training, we see that the policy became
relatively deterministic by choosing the same action NOOP for each state, which means it tends
to choose NOOP on every step. This is because taking other actions are capable of resulting in
a penalty, for example, trying to fght the fre not adjacent to the agent gives a penalty, or even
when the agent starts to learn that putting out fre gives them reward, continue fghting the now
non-existent fre will result in a penalty as well. However, always NOOP results in 0 reward, which
is not bad for the agent consider exploring other action are more likely to result in penalties.

This hinders the agent from learning actions that earn more reward in the long term than the
"safety" actions. Since this is a sparse reward problem, where the big reward earned by putting out
a fre requires the agent to fght the same fre several times to get the reward. The agent might quit
fghting the fre before it is put out. Unfortunately, we are unable to improve our method further to
overcome the problem and have the agents constantly earn positive rewards, but we have many
insights into how to adapt the existing deep reinforcement learning method to open multiagent
environments.

6 CONCLUSION AND FUTURE WORK

Real-world multiagent problems often involve openness, where agents may leave and join the
environment over time. Simulation in the wildfre suppression problem shows that our adapted
method based on the proximal policy optimization algorithm for open multiagent systems enables
the agent to take legal actions in the environment almost without punishments. For future work,
we plan to overcome the problem that agents stop learning once the safety actions are learned; we
also plan to incorporate a multiagent model into the method instead of training individual models
for each frame.

, Vol. 1, No. 1, Article . Publication date: April 2022.

16 Tianxing Zhu

REFERENCES

M. Chandrasekaran, A. Eck, P. Doshi, and L. Soh. Individual planning in open and typed agent systems. In Proceedings of
the Thirty-Second Conference on Uncertainty in Artifcial Intelligence, UAI’16, page 82–91, Arlington, Virginia, USA, 2016.
AUAI Press. ISBN 9780996643115.

A. Eck, M. Shah, P. Doshi, and L.-K. Soh. Scalable decision-theoretic planning in open and typed multiagent systems, 2019.
URL https://arxiv.org/abs/1911.08642.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014. URL https://arxiv.org/abs/1412.6980.
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari with deep

reinforcement learning, 2013. URL https://arxiv.org/abs/1312.5602.
V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous methods

for deep reinforcement learning. 2016. doi: 10.48550/ARXIV.1602.01783. URL https://arxiv.org/abs/1602.01783.
S. J. Russell and P. Norvig. Artifcial Intelligence: A Modern Approach. Prentice Hall, Upper Saddle River, New Jersey, 07458,

3rd. edition, 2010.
J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous control using generalized

advantage estimation, 2015. URL https://arxiv.org/abs/1506.02438.
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms, 2017. URL

https://arxiv.org/abs/1707.06347.
Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge

University Press, 1st. edition, 2009.
R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press, Cambridge, Massachusetts, 2nd.

edition, 2020.
Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba. Scalable trust-region method for deep reinforcement learning using

kronecker-factored approximation, 2017. URL https://arxiv.org/abs/1708.05144.

, Vol. 1, No. 1, Article . Publication date: April 2022.

https://arxiv.org/abs/1911.08642
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1708.05144

	Deep Reinforcement Learning for Open Multiagent System
	Repository Citation

	Abstract
	1 Introduction
	2 Background
	2.1 Reinforcement Learning and MDP
	2.2 Bellman Equation and Q-Learning
	2.3 Neural Network
	2.4 Deep Reinforcement Learning and Deep Q Network (DQN)
	2.5 Advantage Actor-Critic
	2.6 Proximal Policy Optimization (PPO)
	2.7 Generalized Advantage Estimation (GAE)

	3 Problem
	3.1 Open Multiagent Systems
	3.2 Wildfire Domain

	4 Solution
	4.1 Incorporating Openness
	4.2 Neural Network Architecture
	4.3 Adapted Algorithms and Procedure

	5 Experiments
	5.1 Setups
	5.2 Training Details and Hyperparameters
	5.3 Final Results

	6 Conclusion and Future Work
	References

