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Jacobi’s Four Squares Theorem

Arman Yagci

Supervisor: Benjamin Linowitz

Abstract

Jacobi’s Four Squares Theorem is a celebrated result of number theory that provides a
formula for the number of ways a positive integer n can be written as a sum of four integral
squares. In this paper, we prove this theorem using the theory of modular forms.

1 Introduction

Given a natural number n, there are efficient ways to determine whether n is a perfect square.
If it is not, an interesting question to follow with is whether it is a sum of two squares. In general,
given m > 1, mathematicians have wanted to determine which integers could be expressed as a
sum of m integral squares. In 1640, Pierre de Fermat wrote to Marin Mersenne about his Sum of
Two Squares Theorem, in which he outlined a proof method of descent. As he often did, however,
Fermat did not publish the full proof. It was a century later, in 1749, that Leonhard Euler man-
aged to provide the first published proof of the theorem by following Fermat’s method of descent.

Fermat’s Two Squares Theorem. An integer n > 1 can be written as a sum of two squares if
and only if the prime factorization of n does not contain pk (where k is the multiplicity of p) for
all primes p such that p ≡ 3 (mod 4), k odd.

Later, in 1797, Adrien-Marie Legendre published his Three Squares Theorem, which provides
a classification for m = 3.

Legendre’s Three Squares Theorem. A natural number n can be written as a sum of three
squares if and only if n 6= 4a(8b+ 7) for any a, b ≥ 0.

It was actually a bit earlier in 1770 that Joseph-Louis Lagrange famously proved the following
result based on Euler’s work on sums of two squares.

Lagrange’s Four Squares Theorem. Every natural number can be expressed as a sum of four
integral squares.

This completed the picture, as for m > 4, one can simply add squares of zeros as necessary to
express any integer as a sum of m squares. Now that it was known that given a natural number,
there was at least one way of writing it as a sum of four squares, the question became: exactly
how many ways are there? In this paper, we prove Jacobi’s Four Squares Theorem, first proved in
1834 by Carl Jacobi, which expands on Lagrange’s result by providing a formula for the number
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of ways an integer n can be expressed as a sum of four squares. For an in-depth history of these
theorems, please refer to [Weil 1906].

Before we state Jacobi’s theorem, a couple of remarks are in order. When we count the number
of ways of writing n as a sum of four squares, we take order into account. For example, here are
all of the eight different ways 1 can be written as a sum of four integral squares:

1 = (±1)2 + 02 + 02 + 02 = 02 + (±1)2 + 02 + 02

= 02 + 02 + (±1)2 + 02 = 02 + 02 + 02 + (±1)2 .

Although the difference between the eight ways of writing 1 as a sum of four squares is rather
trivial, this is not necessarily the case. As an example, two nontrivially different ways of writing
10 as a sum of four squares are 32 + 12 + 02 + 02 and 22 + 22 + 12 + 12. We now state the theorem:

Jacobi’s Four Squares Theorem. For any positive integer n, let an denote the number of ways
n can be expressed as a sum of four integral squares. Then,

an =

{
8σ(n) for n odd,

24σ(n0) for n = 2rn0 even, n0 odd.

Here, σ(n) gives the sum of the positive divisors of n. Although the theorem only considers val-
ues of n that are positive integers, it’s trivial to see that 0 can only be expressed as 02 +02 +02 +02

and that there is no way to express a negative integer as a sum of squares.

Our proof of the theorem heavily utilizes the theory of modular forms. We begin Section
2 by introducing the concept of modular forms as defined for congruence subgroups of SL2(Z).
Section 3 introduces Hecke operators defined on spaces of modular forms. Our proof of Jacobi’s
Four Squares Theorem begins in Section 4, and it follows the following outline: We first find a
generating series for the sequence {an}n∈Z and show that it is a modular form. Next, we find a
basis for the space of modular forms containing said generating series and use that basis to find
eigenforms for our Hecke operators. Finally, by comparing the Fourier coefficients of particular
eigenforms, we obtain the desired formula. The reader is encouraged to skim the technical lemmas
and propositions in these sections and focus on following this outline for the initial reading.

2 Modular Forms

2.1 The general linear group acts on the Riemann sphere

For any subring R of R, the general linear group GL2(R) is defined as the set of 2 × 2 invertible
matrices with entries in R. The special linear group SL2(R) is the subgroup of GL2(R) consisting
of matrices with determinant 1.

GL2(R) acts on the Riemann sphere C ∪ {∞} by fractional linear transformations. (Here,
imagining the point at infinity far along the imaginary axis, we take ∞ = i∞.) That is, given

γ =

(
a b
c d

)
∈ GL2(R) and z ∈ C ∪ {∞}, we define

γz :=
az + b

cz + d
; γ∞ := lim

z→i∞
γz = a/c.
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We remark that for c 6= 0, γ(−d/c) = limz→−d/c γz = ∞, and if c = 0, γ∞ = limz→i∞ z/d = ∞
(d 6= 0 as det(γ) 6= 0).

We will denote by H the upper half-plane of the complex plane; that is,

H = {z ∈ C | Im z > 0}.

Let GL+
2 (Q) denote the subgroup of GL2(Q) consisting of matrices with positive determinant.

Lemma 2.1. GL+
2 (Q) preserves H.

Proof. Let γ =

(
a b
c d

)
∈ GL+

2 (Q) and z ∈ H. It suffices to show that Im(γz) > 0. We have

Im(γz) = Im
az + b

cz + d
= Im

(az + b)(cz̄ + d)

|cz + d|2
= |cz + d|−2 Im(adz + bcz̄),

where
Im(adz + bcz̄) = ad Im(z) + bc Im z̄ = (ad− bc) Im z.

Since z ∈ H, Im z > 0; and γ ∈ GL+
2 (Q) implies det γ = ad− bc > 0.

Hence, Im(γz) = |cz + d|−2(ad− bc) Im z > 0 as well.

As GL+
2 (Q) ⊇ SL2(Z), we note that SL2(Z) preserves H as well by Lemma 2.1.

Throughout the paper, we’ll frequently encounter two matrices, which are

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

These matrices generate SL2(Z), and the proof is similar to our proof of Proposition 2.3. (See
Exercise 1.1.1 in [Diamond and Shurman (2005)]).

2.2 Congruence Subgroups of SL2(Z)

Definition 2.2. We define the principal congruence subgroup of level N as

Γ(N) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N)

}
,

where two matrices are said to be congruent modulo N if their corresponding entries are congruent
modulo N .

For all N ∈ Z+, note that Γ(N) is the kernel of the surjective homomorphism from SL2(Z) to
SL2(Z/NZ), induced by reduction modulo N . Hence, Γ(N) is a normal subgroup of SL2(Z). More-
over, as the homomorphism embeds the cosets of Γ(N) in SL2(Z) into the finite group SL2(Z/NZ),
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it follows that Γ(N) has finite index in SL2(Z).

A subgroup of SL2(Z) is called a congruence subgroup if it contains Γ(N) for some N . It
will then further be called a congruence subgroup of level N . Note that for all multiples N ′ of
N , Γ(N ′) ⊆ Γ(N). This implies that a subgroup that contains Γ(N) will also contain Γ(N ′).
Therefore, the level of a congruence subgroup is not unique. (Athough some refer to the smallest
level as “the level” of the congruence subgroup, this is not necessary for our purposes.) Moreover,
it is immediate that SL2(Z) itself is a congruence subgroup of all levels N .

Some important congruence subgroups we will use are

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
(mod N)

}
and

Γ1(N) :=

{(
a b
c d

)
∈ Γ0(N) :

(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod N)

}
,

where the entries marked by ∗ can be any integer.

Below, we find generators for Γ0(4), which will be particularly useful in the proof of our main
theorem.

Proposition 2.3. −I, T , and ST 4S generate Γ0(4).

Proof. First, we calculate

ST 4S =

(
0 −1
1 0

)(
1 4
0 1

)(
0 −1
1 0

)
=

(
−1 0
4 −1

)
.

It’s trivial to see that −I, T, ST 4S ∈ Γ0(4), and so they must generate a subgroup of Γ0(4). Let

γ =

(
a b
4c d

)
∈ Γ0(4) be arbitrary. It suffices to show that γ can be written in terms of −I, T ,

and ST 4S (and their inverses).

Note that det(γ) = ad − b(4c) = 1 implies ad ≡ 1 (mod 4) so that either a ≡ d ≡ 1 (mod 4)
or a ≡ d ≡ −1 (mod 4). In particular, this shows that d 6≡ 0 (mod 2).

We will use induction on c. As we can multiply γ by −I if necessary, without loss of generality,
we may assume that c ≥ 0. If c = 0, then ad = 1 forces a = d = ±1. If a = d = 1, then

γ =

(
1 b
0 1

)
= T b. If a = d = −1, then γ =

(
−1 b
0 −1

)
= −IT−b.

Now, suppose γ =

(
a b
4c d

)
can be written in terms of −I, T , and ST 4S whenever 0 ≤ c < c′

for some c′ ∈ Z+. Consider γ =

(
a b

4c′ d

)
. As we saw that d 6≡ 0 (mod 2), we have 2kc′ < |d| <

2(k + 1)c′ for some k ∈ N ∪ {0}.

If k is even and d > 0, let n = −1 and m = −k/2.
If k is even and d < 0, let n = 1 and m = k/2.
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If k is odd and d > 0, let n = 1 and m = −(k + 1)/2.
If k is odd and d < 0, let n = −1 and m = (k + 1)/2.

Then, we have

γTm(−IST 4S)−n =

(
a b

4c′ d

)(
1 m
0 1

)(
1 0

4n 1

)
=

(
a b

4c′ d

)(
4mn+ 1 m

4n 1

)
,

which has lower left entry 4c′(4mn+ 1) + 4nd = 4((4mn+ 1)c′+nd). It’s straightforward to check
that our choice of m,n satisfies −c′ < (4mn + 1)c′ + nd < c′. Multiplying γ by −I if necessary,
without loss of generality, this implies that γTm(−IST 4S)−n has lower left entry in the form of 4c
where 0 ≤ c < c′. By the induction hypothesis, we conclude that γTm(−IST 4S)−n can be written
in terms of −I, T , and ST 4S, which in turn implies that γ can be written in terms of −I, T , and
ST 4S.

We’ve shown that −I, T , and ST 4S generate Γ0(4).

Although it is not a group, another useful set to define is

∆n(N, {1},Z) :=

{
integer matrices

(
a b
c d

)
:

(
a b
c d

)
≡
(

1 ∗
0 n

)
(mod N) and det

(
a b
c d

)
= n

}
.

Below we find “coset representatives” for Γ1(N) in ∆n(N, {1},Z).

First, for all N ∈ Z, we define

αN =

(
0 −1
N 0

)
.

Lemma 2.4. For n,N ∈ Z+, let n = ad where a ∈ (Z/NZ)∗ and d ∈ Z+. For each possible

choice for a, fix σa ≡
(
a−1 0
0 a

)
(mod N) in Γ0(N) where a−1 denotes an integer representing the

inverse of a modulo N . Then,

∆n(N, {1},Z) =
⋃

disjoint

Γ1(N)σa

(
a b
0 d

)
,

where the disjoint union is taken over all pairs a, b such that b ∈ {0, 1, . . . , d− 1}.

Moreover, if gcd(n,N) = 1, then n has an inverse modulo N so that we can fix σn ≡
(
n−1 0
0 n

)
(mod N) in Γ0(N). Let a ∈ (Z/NZ)∗ satisfy n = ad, and let b ∈ {0, 1, . . . , d − 1}. Define

αa,b = σnαNσa

(
a b
0 d

)
α−1N . Then,

∆n(N, {1},Z) =
⋃

disjoint

Γ1(N)αa,b .
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Proof. To prove the first equality, it suffices to show that σa

(
a b
0 d

)
form a complete set of coset

representatives for Γ1(N) in ∆n(N, {1},Z). To see that σa

(
a b
0 d

)
∈ ∆n(N, {1},Z) for all a, b,

observe that det

(
σa

(
a b
0 d

))
= det(σa) det

(
a b
0 d

)
= 1 · n = n and

σa

(
a b
0 d

)
≡
(
a−1 0
0 a

)(
a b
0 d

)
=

(
1 ba−1

0 n

)
(mod N),

as required.

Claim 1: σa

(
a b
0 d

)
are in distinct cosets of Γ1(N) in ∆n(N, {1},Z).

Proof: Suppose, for the sake of contradiction, that there exist distinct σa

(
a b
0 d

)
and σa′

(
a′ b′

0 d′

)
such that Γ1(N)σa

(
a b
0 d

)
= Γ1(N)σa′

(
a′ b′

0 d′

)
. Then, there exists a γ ∈ Γ1(N) such that

γσa

(
a b
0 d

)
= σa′

(
a′ b′

0 d′

)
. (1)

Since γ, σa, σa′ ∈ SL2(Z), we must have(
a b
0 d

)(
a′ b′

0 d′

)−1
=

(
a/a′ −ab′+ba′

a′d′

0 d/d′

)
∈ SL2(Z) (2)

as well. But then det

(
a/a′ −ab′+ba′

a′d′

0 d/d′

)
= 1 implies a/a′ and d/d′ are two integers whose prod-

uct is 1. Thus, a/a′ = d/d′ = 1 since a, a′, d, d′ are positive integers, which forces a = a′ and d = d′.

Now, note that b′+ d
(−ab′+ba

ad

)
= b, where −ab

′+ba
ad

= −ab′+ba′
a′d′

is an integer by equation (2). Fur-

thermore, since we have 0 ≤ b, b′ < d, we must have d
(−ab′+ba

ad

)
= 0. Hence, b = b′. We’ve shown

that σa

(
a b
0 d

)
= σa′

(
a′ b′

0 d′

)
, contradicting our assumption that σa

(
a b
0 d

)
and σa′

(
a′ b′

0 d′

)
were distinct. We conclude that σa

(
a b
0 d

)
are in distinct cosets of Γ1(N) in ∆n(N, {1},Z), prov-

ing the claim. 4

Claim 2: For any α =

(
a′ b′

c′ d′

)
∈ ∆n(N, {1},Z), α ∈ Γ1(N)σa

(
a b
0 d

)
for some σa

(
a b
0 d

)
.

Proof: We’ll first show that there exists a γ ∈ SL2(Z) such that γα =

(
a b
0 d

)
, where

gcd(a,N) = 1, a > 0, ad = n, and 0 ≤ b < d.

Let g = c′

gcd(a′,c′)
and h = − a′

gcd(a′,c′)
. Then, ga′+hc′ = 0. Since gcd(g, h) = 1, there exist e, f ∈ Z

such that eh − gf = 1. Thus, γ =

(
e f
g h

)
∈ SL2(Z). Consider γα and write γα =

(
a b
c d

)
for
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some a, b, c, d ∈ Z. Since det(γα) = det(γ) det(α) = 1 ·n = n and c = ga′+hc′ = 0, γα =

(
a b
0 d

)
,

where d = n/a so that det(γα) = n. Observe also that a′ ≡ 1 (mod N) and c′ ≡ 0 (mod N)
imply a = ea′ + fc′ ≡ e (mod N). As N | c′ and gcd(a′, N) = 1, we also have g = c′

gcd(a′,c′)
≡ 0

(mod N). Thus, eh− gf = 1 implies eh ≡ 1 (mod N) so that gcd(e,N) = 1. As a ≡ e (mod N),
gcd(a,N) must divide N and e, which forces gcd(a,N) = 1.

Since det(γα) = n 6= 0, a 6= 0. Suppose a < 0. Since d = n/a, d < 0 as well. Choose j ∈ Z such

that 0 ≤ −b+ jd < −d. Then,

(
−1 j
0 −1

)
γα =

(
−a −b+ jd
0 −d

)
is a matrix with determinant n,

−a > 0, and 0 ≤ −b+ jd < −d. Similary, if a > 0, choose j ∈ Z such that 0 ≤ b+ jd < d. Then,(
1 j
0 1

)
γα =

(
a b+ jd
0 d

)
is a matrix with determinant n, a > 0, and 0 ≤ b + jd < d. Hence,

without loss of generality, we may suppose that γα =

(
a b
0 d

)
has determinant n, where a > 0

and 0 ≤ b < d.

Next, note that α ∈ ∆n(N, {1},Z) implies α ≡
(

1 s
0 n

)
(mod N) for some s ∈ Z. Thus,

α = γ−1
(
a b
0 d

)
gives us

(
1 s
0 n

)
≡ γ−1

(
a b
0 d

)
(mod N). Hence, γ−1 ≡

(
a−1 t
0 a

)
(mod N)

for some t ∈ Z. Observe that

γ−1σ−1a ≡
(
a−1 t
0 a

)(
a 0
0 a−1

)
≡
(
aa−1 ta−1

0 aa−1

)
≡
(

1 ta−1

0 1

)
(mod N),

which shows that γ−1σ−1a ∈ Γ1(N).

Hence, γ−1 ∈ Γ1(N)σa so that α ∈ Γ1(N)σa

(
a b
0 d

)
, as desired. 4

This proves the first equality. Next, to prove the second equality, it suffices to show that
αa,b form a complete set of coset representatives for Γ1(N) in ∆n(N, {1},Z). To see that αa,b ∈
∆n(N, {1},Z) for all a, b, observe that

αa,b ≡
(
n−1 0
0 n

)(
0 −1
N 0

)(
a−1 0
0 a

)(
a b
0 n/a

)(
0 1/N
−1 0

)
=

(
1 ∗

−Nbna−1 n

)
≡
(

1 ∗
0 n

)
(mod N).

Furthermore, as σn, σa ∈ Γ0(N), we see that

det(αa,b) = det(σn) det(αN) det(σa) det

(
a b
0 d

)
det(α−1N ) = 1 ·N · 1 · n · 1

N
= n.

Hence, αa,b ∈ ∆n(N, {1},Z).

Claim 3: αa,b are in distinct cosets of Γ1(N) in ∆n(N, {1},Z).
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Proof: Suppose, for the sake of contradiction, that there exist distinct αa,b and αa′,b′ such that
Γ1(N)αa,b = Γ1(N)αa′,b′ . Then, there exists a γ ∈ Γ1(N) such that γαa,b = αa′,b′ . Thus, we have

γ

(
σnαNσa

(
a b
0 d

)
α−1N

)
= σnαNσa′

(
a′ b′

0 d′

)
α−1N ⇒ γσnαNσa

(
a b
0 d

)
= σnαNσa′

(
a′ b′

0 d′

)
⇒ σ−1n γσnαNσa

(
a b
0 d

)
= αNσa′

(
a′ b′

0 d′

)
Let γ′ = σ−1n γσn. Write γ =

(
j k
` m

)
and note that

γ′ = σ−1n γσn ≡
(
n 0
0 n−1

)(
j k
` m

)(
n−1 0
0 n

)
=

(
j n2k

`(n−1)2 m

)
(mod N).

As σn, γ
′ ∈ Γ0(N), det(γ′) = det(σ−1n ) det(γ) det(σn) = 1 · 1 · 1 = 1. Furthermore, γ ∈ Γ1(N)

implies j ≡ m ≡ 1 (mod N) and `(n−1)2 ≡ 0 (mod N). It follows that γ′ ∈ Γ1(N). We have

γ′αNσa

(
a b
0 d

)
= αNσa′

(
a′ b′

0 d′

)
⇒ α−1N γ′αNσa

(
a b
0 d

)
= σa′

(
a′ b′

0 d′

)
.

Next, let γ̄ = α−1N γ′αN . Once again, we write γ′ =

(
j′ k′

`′ m′

)
for some j′, k′, `′,m′ ∈ Z and note

that

γ̄ = α−1N γ′αN =

(
0 1/N
−1 0

)(
j′ k′

`′ m′

)(
0 −1
N 0

)
=

(
m′ −`′/N
−Nk′ j′

)
.

As conjugation doesn’t change the determinant, det

(
m′ −`′/N
−Nk′ j′

)
= det

(
j′ k′

`′ m′

)
= 1. Since

γ′ ∈ Γ1(N), we also have m′ ≡ j′ ≡ 1 (mod N) and −`′/N ∈ Z. Finally, −Nk′ ≡ 0 (mod N)
shows that γ̄ ∈ Γ1(N). We’ve obtained the equation

γ̄σa

(
a b
0 d

)
= σa′

(
a′ b′

0 d′

)
. (3)

Now, following the proof of Claim 1 from equation (1) onwards with the substitution γ = γ̄
shows that a = a′, b = b′, and d = d′. Hence, αa,b = αa′,b′ , which contradicts our assumption that
αa,b and αa′,b′ were distinct. We conclude that αa,b are in distinct cosets of Γ1(N) in ∆n(N, {1},Z),
proving the claim. 4

Claim 1 and Claim 2 show that every coset of Γ1(N) in ∆n(N, {1},Z) can be written in the

form Γ1(N)σa

(
a b
0 d

)
. Furthermore, it is clear from the definition of αa,b that each αa,b is uniquely

determined by σa

(
a b
0 d

)
. Since Claim 3 shows that αa,b are in distinct cosets, they must form a

complete set of coset representatives. This completes the proof of the lemma.

2.3 Weight-k operators

Definition 2.5. Let f : H ∪ Q ∪ {∞} −→ C ∪ {∞} be a function, and let k ∈ Z. Given

γ =

(
a b
c d

)
∈ GL+

2 (Q), we define the weight-k operator [γ]k by

f(z)|[γ]k := (det γ)k/2(cz + d)−kf(γz) .
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Here, Lemma 2.1 ensures that γz is in the domain of f .

Proposition 2.6. The weight-k operator preserves addition and scalar multiplication of functions
that map from H ∪Q ∪ {∞} to C ∪ {∞}.

Proof. Let f, g : H∪Q∪ {∞} −→ C∪ {∞}, r ∈ C, k ∈ Z, and γ ∈ GL+
2 (Q). Then, by Definition

2.5, we have

(f + g)(z)|[γ]k = det(γ)k/2(cz + d)−k(f + g)(γz)

= det(γ)k/2(cz + d)−k(f(γz) + g(γz))

= det(γ)k/2(cz + d)−kf(γz) + det(γ)k/2(cz + d)−kg(γz)

= f(z)|[γ]k + g(z)|[γ]k

and

(rf)(z)|[γ]k = det(γ)k/2(cz + d)−k(rf)(γz) = r det(γ)k/2(cz + d)−kf(γz) = rf(z)|[γ]k,

as desired.

Proposition 2.7. f |[γ1γ2]k = (f |[γ1]k)|[γ2]k for all γ1, γ2 ∈ GL+
2 (Q).

Proof. For all γ =

(
a b
c d

)
∈ GL+

2 (Q), observe that

(
dγz

dz

)k/2
f(γz) =

(
d(az+b

cz+d
)

dz

)k/2

f(γz)

=

(
a(cz + d)− c(az + b)

(cz + d)2

)k/2
f(γz)

=
(acz + ad− caz − cb)k/2

(cz + d)2k/2
f(γz)

=
(ad− bc)k/2

(cz + d)k
f(γz)

= (det γ)k/2(cz + d)−kf(γz)

= f(z)|[γ]k .

Let γ1, γ2 ∈ GL+
2 (Q). Since GL+

2 (Q) is closed under matrix multiplication, γ1γ2 ∈ GL+
2 (Q) as

well. Consider

f(z)|[γ1γ2]k =

(
dγ1γ2z

dz

)k/2
f(γ1γ2z).

By the chain rule, this equals
(

dγ1(γ2z)
d(γ2z)

· d(γ2z)
dz

)k/2
f(γ1γ2z) =

(
dγ1(γ2z)
d(γ2z)

)k/2 (
d(γ2z)
dz

)k/2
f(γ1γ2z).

On the other hand, let g(z) = f(z)|[γ1]k =
(
dγ1z
dz

)k/2
f(γ1z) and observe that

(f(z)|[γ1]k)|[γ2]k = g(z)|[γ2]k =

(
dγ2z

dz

)k/2
g(γ2z).

Since g(γ2z) =
(

dγ1(γ2z)
d(γ2z)

)k/2
f(γ1γ2z), we have shown that f(z)|[γ1γ2]k = (f(z)|[γ1]k)|[γ2]k.
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2.4 Definition of A Modular Form for Congruence Subgroups

Definition 2.8. Let Γ be a congruence subgroup of SL2(Z) and let k be an integer. A function
f : H −→ C is a modular form of weight k with respect to Γ if

(1) f is holomorphic on H,
(2) f |[α]k is holomorphic at ∞ for all α ∈ SL2(Z), and
(3) f = f |[γ]k for all γ ∈ Γ.

A function that satisfies the third condition is called weight-k invariant under Γ. The set of
modular forms of weight k with respect to Γ is denoted Mk(Γ).

Let f be a modular form. This means that f ∈ Mk(Γ) where Γ ⊆ SL2(Z) is a congruence

subgroup of level N for some N ∈ Z+. Then, TN =

(
1 N
0 1

)
∈ Γ(N) ⊆ Γ implies f(z + N) =

f(z)|[TN ]k = f(z) so that f is N -periodic. In particular, since f is both holomorphic (i.e., f ∈ C∞)
and periodic, it must have a Fourier expansion that converges to f . That is, one can write

f(z) =
∞∑

n=−∞

anq
n/h, where q = e2πiz

for some period h ∈ Z+, and the sequence of Fourier coefficients {an(f)}n∈Z uniquely determines f .

Furthermore, when we say that a holomorphic and h-periodic function f is holomorphic at ∞
(which is true for all modular forms f by Definition 2.8), we mean that f(z) is bounded as z → i∞,
or, equivalently, that f has a Fourier expansion of the form

f(z) =
∞∑
n=0

anq
n/h .

To see that these two definitions are equivalent, note that if f were to have a nonzero Fourier
coefficient an for some n < 0, then

lim
z→i∞

|ane2πinz/h| = lim
b→∞
|ane2π|n|b/h| = +∞

would imply that f is not bounded as z → i∞. On the other hand, when n ≥ 0, we have

lim
z→i∞

|ane2πinz/h| =

{
|a0| < +∞ if n = 0;

0 if n > 0.

Due to the polynomial growth rate of an (as will be seen in Lemma 2.10), limn→∞
z→i∞

anq
n/h = 0 so that

the series
∑∞

n=0 anq
n/h diverges if and only if there exists an n ∈ Z such that limz→i∞ |anqn/h| =

+∞. As we’ve shown that no such n ≥ 0 exists, we conclude that
∑∞

n=0 anq
n/h is indeed bounded

as z → i∞.

Remark 2.9. Suppose f ∈Mk(Γ) where Γ contains T =

(
1 1
0 1

)
. Then, f(z+1) = f(z)|[T ]k = f(z)

so that f has period 1 and hence has a Fourier expansion f(z) =
∑∞

n=0 an(f)qn.
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To confirm conditions (1) and (2) in Definition 2.8, we combine Lemma 4.3.3 in [Miyake (2006)]
and Proposition 1.2.4 in [Diamond and Shurman (2005)] into the following lemma:

Lemma 2.10. Let Γ be a congruence subgroup of SL2(Z) of level N , and let f : H −→ C be a
1-periodic function that is weight-k invariant under Γ. Then, f ∈ Mk(Γ) if and only if f has a
Fourier expansion of the form

f(z) :=
∞∑
n=0

anq
n, q = e2πiz

that satisfies |an| ≤ cnr for all n ∈ Z+ and some positive constants c and r.

Remark 2.11. Lemma 4.3.3 in [Miyake (2006)] considers Fourier series of the form f =
∑∞

n=1 an(f)qn.
On the other hand, if we let g =

∑∞
n=0 an(g)qn such that g = a0(g) + f , Proposition 1.2.4 in

[Diamond and Shurman (2005)] looks at g written in the form g =
∑∞

n=0 a
′
n(g)qn/N . Suppose

|an(f)| ≤ cnr for all n ∈ Z+ and some positive constants c, r. Then, since an(f) = an(g) for all
n ∈ Z+, we also have |an(g)| ≤ cnr. Observe that

g =
∞∑
n=0

an(g)qn =
∑
n≥0
N |n

an/N(g)qn/N =
∞∑
n=0

a′n(g)qn/N ,

where

|a′n(g)| =

{
0 ≤ cnr if N - n;

|an/N(g)| ≤ c(n/N)r ≤ cnr if N | n.

Hence, for all n ∈ Z+, |a′n(g)| ≤ cnr as well. Also noting that g is holomorphic at ∞ by
definition, this enables us to combine the two results as we did. The “if and only if” nature of
the statement is due to only considering 1-periodic functions and noting the remark right after
the statement of Proposition 1.2.4 in [Diamond and Shurman (2005)] that the converse of the
proposition is also true.

Proposition 2.12. For all congruence subgroups Γ of SL2(Z), Mk(Γ) is a complex vector space.

Proof. We verify the vector space axioms.
First, we show closure under addition and scalar multiplication. Let f, g ∈ Mk(Γ), c ∈ C, and
γ ∈ Γ. Then, by the algebra of holomorphic functions, cf+g satisfies conditions (1) and (2) in Def-
inition 2.8. As for the third condition, by Proposition 2.6, we have (cf+g)|[γ]k = c·f |[γ]k+g|[γ]k =
cf + g, as desired.
The additive identity is the zero function, and the rest of the axioms follow from the properties
of functions. For example, commutativity can be seen from (f + g)|[γ]k = f + g = g + f =
(g + f)|[γ]k.

For odd k, if −I ∈ Γ, note that f(z) = f(z)|[−I]k = −f(z) forces that f is the zero function;
that is, dim(Mk(Γ)) = 0. In general, condition (2) in Definition 2.8 ensures that Mk(Γ) has finite
dimension. Explicit dimension formulas for even k and odd k can be found in Theorem 3.5.1 and
Theorem 3.6.1 in [Diamond and Shurman (2005)], respectively.

The following proposition reduces condition (3) in Definition 2.8 to weight-k invariance under
a finite set.
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Proposition 2.13. Let Γ be a congruence subgroup of SL2(Z). Then, f is weight-k invariant
under Γ if and only if f is weight-k invariant under the generators of Γ. Therefore, it suffices to
check weight-k invariance under the generators of Γ to confirm condition (3) in Definition 2.8.

Proof. Let Γ be a congruence subgroup of SL2(Z). Since Γ contains the finite index subgroup
Γ(N) for some N by definition, Γ has finite index as well. As a finite index subgroup of the
finitely generated group SL2(Z), it follows that Γ is finitely generated. Let γ1, γ2, . . . , γn be the
generators of Γ. If f is weight-k invariant under Γ, then clearly f is weight-k invariant under
{γ1, γ2, . . . , γn} ⊆ Γ.
Next, suppose f is weight-k invariant under {γ1, γ2, . . . , γn}. By Proposition 2.7, observe that for
1 ≤ i ≤ n, we have

f |[γ−1i ]k = (f |[γi]) |[γ−1i ]k = f |[γiγ−1i ]k = f |[I2]k = f

as well. Define γn+1 = γ−11 , γn+2 = γ−12 , . . . , γ2n = γ−1n . Then, our observation shows that f is
weight-k invariant under {γ1, γ2, . . . , γ2n}.

For all γ ∈ Γ, we can write γ = γa1γa2 . . . γam for some m ∈ Z+, where a1, . . . , am ∈
{1, 2, . . . , 2n}, possibly with repetition.

To show that f |[γ]k = f , we will use induction on m. When m = 1, we have f |[γ]k = f |[γa1 ]k =
f , since γa1 ∈ {γ1, γ2, . . . , γ2n}. Now, suppose f |[γa1γa2 . . . γam ]k = f for some m ∈ Z+. By
Proposition 2.7, we have

f |[γa1γa2 . . . γamγam+1 ]k = (f |[γa1γa2 . . . γam ]k)|[γam+1 ]k,

which equals f |[γam+1 ]k by our inductive hypothesis. Furthermore, since γam+1 ∈ {γ1, γ2, . . . , γ2n},
we see that f |[γa1γa2 . . . γamγam+1 ]k = f |[γam+1 ]k = f , as desired.

We’ve shown that f is weight-k invariant under Γ if and only if f is weight-k invariant under
the generators of Γ.

Proposition 2.14. Let Γ,Γ′ be congruence subgroups of SL2(Z). If Γ′ ⊆ Γ, then Mk(Γ) ⊆Mk(Γ
′).

Proof. Suppose Γ,Γ′ are congruence subgroups of SL2(Z) such that Γ′ ⊆ Γ. Let f ∈ Mk(Γ).
Then, f satisfies conditions (1) and (2) in Definition 2.8. Furthermore, f = f |[γ]k for all γ ∈ Γ.
Since Γ′ ⊆ Γ, this implies f = f |[γ′]k for all γ′ ∈ Γ′. Hence, f ∈ Mk(Γ

′). We conclude that
Mk(Γ) ⊆Mk(Γ

′).

Lemma 2.15. The weight-k operator [αN ]k preserves Mk(Γ0(N)).

Proof. Let f(z) ∈ Mk(Γ0(N)) and let γ =

(
a b
c d

)
∈ Γ0(N). As z ∈ H, z is never 0 or i∞ so

that f being holomorphic implies f(z)|[αN ]k = det(αN)k/2(Nz)−kf(αNz) = N−k/2z−kf
(−1
Nz

)
is

also holomorphic. Note that as z → i∞, we have

f(z)|[αN ]k = N−k/2z−kf

(
−1

Nz

)
∼ N−k/2

(
z−kf(−1/z)

)
= N−k/2f(z)|[S]k .
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Recall that S =

(
0 −1
1 0

)
∈ SL2(Z) and that SL2(Z) is closed under matrix multiplication.

Then, as z → i∞, since f(z)|[Sα]k = (f(z)|[S]k)|[α]k is bounded by condition (2) in Definition 2.8
for all α ∈ SL2(Z), it follows that (f(z)|[αN ]k)|[α]k ∼ N−k/2(f(z)|[S]k)|[α]k is also bounded.

It now suffices to show that (f |[αN ]k)|[γ]k = f |[αN ]k. Note that

αNγα
−1
N =

(
0 −1
N 0

)(
a b
c d

)(
0 1/N
−1 0

)
=

(
d −c/N
−Nb a

)
.

Because γ ∈ Γ0(N), we have c ≡ 0 (mod N) so that −c/N ∈ Z. Also, as conjugation doesn’t
change the determinant, det(αNγα

−1
N ) = det(γ) = 1. Finally, it’s clear that −Nb ≡ 0 (mod N)

and that a, d ∈ Z. Hence, αNγα
−1
N ∈ Γ0(N). In particular, this implies f = f |[αNγα−1N ]k since

f ∈Mk(Γ0(N)). Then, by Proposition 2.7, we have

f |[αN ]k = (f |[αNγα−1N ]k)|[αN ]k = (f |[αN ]k)|[γ]k,

as desired.

3 Hecke Operators

3.1 The Tn Operator

Definition 3.1. For f ∈Mk(Γ1(N)) and n ∈ Z+, we define the Tn Hecke operator as

Tnf := n(k/2)−1
∑

f |[αj]k,

where αj runs through a set of coset representatives for Γ1(N) in ∆n(N, {1},Z).

We must show that Tn is well-defined, i.e., it does not depend on our choice of coset represen-
tatives.
Let Γ1(N)αj = Γ1(N)βj for some αj, βj ∈ ∆n(N, {1},Z). Then, αj = γβj for some γ ∈ Γ1(N). As
f ∈Mk(Γ1(N)), by Proposition 2.7 and Definition 2.8, we have

f |[αj]k = f |[γβj]k = (f |[γ]k)|[βj]k = f |[βj]k,

which implies

n(k/2)−1
∑

f |[αj]k = n(k/2)−1
∑

f |[βj]k,

as required.

At the end of the section, we’ll show that Tn preserves Mk(Γ0(N)). For now, we prove some
results about commutativity and Fourier coefficients.

Proposition 3.2. Let f ∈ Mk(Γ0(N)). Then, Tn(Tmf) = Tm(Tnf) for all n,m ∈ Z+ with
gcd(n,m) = 1.
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Proof. Let f ∈Mk(Γ0(N)) ⊆Mk(Γ1(N)). By Definition 3.1 and Proposition 2.7, we have

(Tnf)(z) = nk/2−1
∑

gcd(a,N)=1
a>0, ad=n
0≤b<d

f(z)|[σa
(
a b
0 d

)
]k

= nk/2−1
∑

gcd(a,N)=1
a>0, ad=n
0≤b<d

(f(z)|[σa]k)|[
(
a b
0 d

)
]k .

Since σa ∈ Γ0(N) and f ∈Mk(Γ0(N)), f(z)|[σa]k = f(z) so that

(Tnf)(z) = nk/2−1
∑

gcd(a,N)=1
a>0, ad=n
0≤b<d

f(z)|[
(
a b
0 d

)
]k

= nk/2−1
∑

gcd(a,N)=1
a>0, ad=n
0≤b<d

nk/2d−kf

((
a b
0 d

)
z

)

= nk/2−1nk/2
∑

gcd(a,N)=1
a>0, ad=n
0≤b<d

(n
a

)−k
f

((
a b
0 d

)
z

)

=
1

n

∑
gcd(a,N)=1
a>0, ad=n
0≤b<d

akf

((
a b
0 d

)
z

)
.

Thus, we have

(Tm(Tnf))(z) =
1

m

∑
gcd(a′,N)=1
a′>0, a′d′=m

0≤b′<d′

(a′)k
1

n

∑
gcd(a,N)=1
a>0, ad=n
0≤b<d

akf

((
a′ b′

0 d′

)(
a b
0 d

)
z

)
=

1

mn

∑
gcd(a′,N)=1
a′>0, a′d′=m

0≤b′<d′

∑
gcd(a,N)=1
a>0, ad=n
0≤b<d

(aa′)kf

((
aa′ a′b+ b′d
0 dd′

)
z

)
.

Here, without loss of generality, we remark that the restriction 0 ≤ b < d in the sums can be
replaced by the restriction of b being an element of a (fixed) complete residue system modulo d.

To see this, note that for all q ∈ Z, as T q =

(
1 q
0 1

)
∈ Γ0(N), f(T qz) = f(z)|[T q]k = f(z). Thus,

f

((
a b+ qd
0 d

)
z

)
= f

(
T q
(
a b
0 d

)
z

)
= f

((
a b
0 d

)
z

)
.

Claim: As a and a′ run through the positive divisors of n and m such that gcd(a,N) =
gcd(a′, N) = 1, the product aa′ runs through the positive divisors of mn. Furthermore, as b and
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b′ run through the elements of complete residue systems modulo d and d′, respectively, the linear
combination a′b+ b′d runs through the elements of a complete residue system modulo dd′.

Proof: Let
A = {a : gcd(a,N) = 1, a > 0, a | n},

B = {a′ : gcd(a′, N) = 1, a′ > 0, a′ | m},

C = {s : gcd(s,N) = 1, s > 0, s | mn},

D = {aa′ : a ∈ A and a′ ∈ B}.

Fix a ∈ A and a′ ∈ B; let d = n/a, d′ = m/a′. Define

E = {a′b+ b′d : 0 ≤ b < d and 0 ≤ b′ < d′}.

Our claim is equivalent to the assertion that C = D and E is a complete residue system modulo
dd′.

To see that D ⊆ C, let aa′ ∈ D. Then, gcd(a,N) = gcd(a′, N) = 1 implies gcd(aa′, N) = 1;
a, a′ > 0 implies aa′ > 0; and a | n and a′ | m imply aa′ | mn. It follows that aa′ ∈ C, which
implies D ⊆ C.

To see that C ⊆ D, let s ∈ C. Furthermore, let a = gcd(s, n), and a′ = gcd(s,m). Then, a | n,
a′ | m, and a, a′ > 0.
We were given that gcd(n,m) = 1. Since we also have a, a′ | s and gcd(a, a′) = gcd(s, n,m) =
gcd(s, gcd(n,m)) = gcd(s, 1) = 1, we conclude that aa′ | s. By Bezout’s identity, we can write
a = gcd(s, n) = sx + ny and a′ = gcd(s,m) = sx′ + my′ for some x, x′, y, y′ ∈ Z. Thus,
aa′ = (sx + ny)(sx′ + my′) = s2xx′ + sxmy′ + sx′ny + mnyy′ = s(sxx′ + xmy′ + x′ny + mn

s
yy′)

where mn
s
∈ Z as s ∈ C. This implies that s | aa′, and together with aa′ | s, we conclude that

s = ±aa′. Since s ∈ C implies s > 0, and we also have a, a′ > 0, we can further conclude that
s = aa′.
Next, without loss of generality, suppose gcd(a,N) > 1. Then, gcd(s,N) = gcd(aa′, N) ≥
gcd(a,N) > 1 contradicts s ∈ C. Hence, gcd(a,N) = gcd(a′, N) = 1.
We’ve shown that c ∈ D, which implies C ⊆ D. Together with our earlier result D ⊆ C, we
conclude that C = D, as desired.

Next, we show that E is a complete residue system modulo dd′. Assume a′b+b′d = a′β+β′d for
some 0 ≤ b, β < d and 0 ≤ b′, β′ < d′. Then, a′(b− β) = d(β′ − b′) implies b− β = t · lcm(a′, d)/a′

for some t ∈ Z. But since gcd(m,n) = 1 ⇒ gcd(m/d′, n/a) = gcd(a′, d) = 1, we must have
lcm(a′, d) = a′d so that b − β = ta′d/a′ = td. The restriction 0 ≤ b, β < d forces t = 0 so that
b = β.
With the substitution β = b, we now have a′b+b′d = a′b+β′d, which implies b′ = β′. We’ve shown
that each pair (b, b′) corresponds to a unique element of E. Hence, E has a total of dd′ elements.
It remains to show that the elements of E are pairwise incongruent modulo dd′. Assume a′b+b′d ≡
a′β + β′d (mod dd′) for some 0 ≤ b, β < d and 0 ≤ b′, β′ < d′. Then, as d | dd′, we also have
a′b + b′d ≡ a′β + β′d (mod d), which implies a′b ≡ a′β (mod d). Because gcd(a′, d) = 1, we can
divide both sides by a′ to obtain b ≡ β (mod d). As 0 ≤ b, β < d, this means b = β.
With the substitution β = b, we now have a′b+ b′d ≡ a′b+ β′d (mod dd′), which implies b′d ≡ β′d
(mod dd′). As d 6= 0, we can divide both sides by d to obtain b′ ≡ β′ (mod dd′/ gcd(d, dd′)), that
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is, b′ ≡ β′ (mod d′). As 0 ≤ b′, β′ < d′, this means b′ = β′. We’ve shown that the elements of E
are pairwise incongruent.
Overall, we conclude that E is a complete residue system modulo dd′, which completes the proof
of our claim. 4

The claim that we proved implies that

(Tm(Tnf))(z) =
1

mn

∑
gcd(aa′,N)=1

aa′>0, (aa′)(dd′)=mn
0≤a′b+b′d<dd′

(aa′)kf

((
aa′ a′b+ b′d
0 dd′

)
z

)

= (Tmnf)(z) = (Tnmf)(z) = (Tn(Tmf))(z),

proving the proposition.

The following lemma will be useful in the proof of Proposition 3.4.

Lemma 3.3. Let f ∈Mk(Γ1(N)), and let p be a prime such that p | N . Then,

Tpf = p(k/2)−1
p−1∑
j=0

f |[
(

1 j
0 p

)
]k.

Proof. Consider the coset representatives σa

(
a b
0 d

)
that we found in Lemma 2.4. By Definition

3.1, we have

Tpf = p(k/2)−1
∑

f |[σa
(
a b
0 d

)
]k.

Recall the definitions in Lemma 2.4 and substitute n = p. Since p is prime, a > 0, and a | p,
either a = 1 or a = p. Suppose a = p. Since p | N , gcd(p,N) > 1, which contradicts the fact that

a was defined to be invertible modulo N . Hence, a = 1. So σa ∈ Γ0(N) such that σa ≡
(

1 0
0 1

)
(mod N). We can fix σa to be the identity matrix. Then, from p = ad, we have d = p, which in
turn implies b ∈ {0, 1, 2, . . . , p− 1}. We conclude that

Tpf = p(k/2)−1
p−1∑
j=0

f |[
(

1 j
0 p

)
]k,

as desired.

Proposition 3.4. Let f ∈Mk(Γ1(N)), and let p be a prime divisor of N . Then, Tpf has a Fourier
expansion given by

Tpf(z) =
∞∑
n=0

anp(f)qn.

In other words, an(Tpf) = anp(f).
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Proof. By Lemma 3.3, we have

Tpf(z) = p(k/2)−1
p−1∑
j=0

f(z)|[
(

1 j
0 p

)
]k

= p(k/2)−1
p−1∑
j=0

pk/2(0z + p)−kf

(
z + j

p

)

= p(k/2)−1p−k/2
p−1∑
j=0

f

(
z + j

p

)

=
1

p

p−1∑
j=0

f

(
z + j

p

)
.

As T =

(
1 1
0 1

)
∈ Γ1(N), Remark 2.9 implies that f has a Fourier expansion f(z) =

∑∞
n=0 an(f)qn,

where q = e2πiz. Then, expressing f as a Fourier series, Tpf(z) equals

1

p

p−1∑
j=0

(
∞∑
n=0

an(f)e2πin(z+j)/p

)
=

1

p

p−1∑
j=0

(
∞∑
n=0

an(f)e2πinz/pe2πinj/p

)
=

1

p

∞∑
n=0

(
an(f)e2πinz/p

p−1∑
j=0

e2πinj/p

)
.

Note that if p | n, e2πinj/p = 1 for all j so that
∑p−1

j=0 e
2πinj/p = p. On the other hand, if p - n, then

e2πin/p 6= 1 so that
∑p−1

j=0 e
2πinj/p = 1−(e2πin/p)p

1−e2πin/p = 0.
Thus,

Tpf(z) =
1

p

∞∑
n=0

(
an(f)e2πinz/p

p−1∑
j=0

e2πinj/p

)
=
∑
n≥0
p|n

an(f)e2πinz/p

=
∞∑
n=0

anp(f)qn.

We’ve shown that an(Tpf) = anp(f).

Concerning the proof of our main theorem, we only need the following corollary.

Corollary 3.4.1. If f ∈M2(Γ0(4)), then an(T2f) = a2n(f).

Proof. Note that Γ1(4) ⊆ Γ0(4) implies M2(Γ0(4)) ⊆ M2(Γ1(4)) by Proposition 2.14. The result
follows from Proposition 3.4 because 2 is a prime divisor of 4.
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Proposition 3.5. Let f ∈ Mk(Γ0(N)) and n ∈ Z+. Considering the Fourier expansions f =∑
m∈Z am(f)qm and Tnf =

∑
m∈Z am(Tnf)qm, for all m ∈ Z, we have

am(Tnf) =
∑

gcd(a,N)=1
a>0, a|gcd(m,n)

ak−1anm/a2(f).

In particular, am(Tnf) = amn(f) whenever gcd(m,n) = 1.

Proof. As in the proof of Proposition 3.2, for f ∈Mk(Γ0(N)), we have

(Tnf)(z) =
1

n

∑
gcd(a,N)=1
a>0, ad=n
0≤b<d

akf

((
a b
0 d

)
z

)
=

1

n

∑
gcd(a,N)=1
a>0, ad=n
0≤b<d

akf

(
az + b

d

)
.

Since T ∈ Γ0(N), Remark 2.9 shows that expressing f as a Fourier series gives

(Tnf)(z) =
1

n

∑
gcd(a,N)=1
a>0, ad=n
0≤b<d

ak
∞∑
n′=0

(
an′(f)e2πin

′(az+b)/d
)

=
1

n

∑
gcd(a,N)=1
a>0, ad=n
0≤b<d

ak
∞∑
n′=0

(
an′(f)e2πin

′az/de2πin
′b/d
)

=
1

n

∑
gcd(a,N)=1
a>0, ad=n

n′∈Z

(
akan′(f)e2πin

′az/d
d−1∑
b=0

e2πin
′b/d

)
.

Note that if d | n′, e2πin′b/d = 1 for all b so that
∑d−1

b=0 e
2πin′b/d = d. On the other hand, if d - n′,

then e2πin
′/d 6= 1 so that

∑d−1
b=0 e

2πin′b/d =
∑d−1

b=0(e2πin
′/d)b = 1−(e2πin′/d)d

1−e2πin′/d = 0.

Hence, we may only consider the case d|n′. Writing n′ = dm′, we have

(Tnf)(z) =
1

n

∑
gcd(a,N)=1
a>0, ad=n
m′∈Z

(
dakadm′(f)e2πim

′az
)
.

Substituting d = n/a, this equals ∑
gcd(a,N)=1
a>0, a|n
m′∈Z

(
ak−1anm′/a(f)qm

′a
)
.

We make a final change of variables m = am′ to obtain

(Tnf)(z) =
∑

gcd(a,N)=1
a|n, a|m
a>0, m∈Z

(
ak−1anm/a2(f)qm

)
=

∞∑
m=0

qm ∑
gcd(a,N)=1

a>0, a|gcd(m,n)

ak−1anm/a2(f)

 .
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Hence, for all m ∈ Z, we have

am(Tnf) =
∑

gcd(a,N)=1
a>0, a|gcd(m,n)

ak−1anm/a2(f).

(When m < 0, am(Tnf) = anm/a2(f) = 0 as both Tnf and f are modular forms.)

In particular, when gcd(m,n) = 1, {a ∈ Z+ : a | gcd(m,n)} = {1} implies

am(Tnf) = 1k−1anm/12(f) = amn(f).

Proposition 3.6. The Hecke operator Tn preserves Mk(Γ0(N)).

Proof. First, we’ll show that Tnf is weight-k invariant under Γ0(N).

Let α be a coset representative for Γ1(N) in ∆n(N, {1},Z). For any γ =

(
a b
c d

)
∈ Γ0(N), note

that det γ = ad− bc ≡ 1 (mod N) and c ≡ 0 (mod N) imply ad ≡ 1 (mod N). Thus, we have

γ−1αγ ≡
(
d −b
0 a

)(
1 ∗
0 n

)(
a b
0 d

)
≡
(
d ∗
0 an

)(
a b
0 d

)
≡
(
ad ∗
0 adn

)
≡
(

1 ∗
0 n

)
(mod N).

Since we also have det(γ−1αγ) = det(γ−1) · det(α) · det(γ) = 1 · n · 1 = n, we conclude that
γ−1αγ ∈ ∆n(N, {1},Z) for all γ ∈ Γ0(N). Noticing that Γ1(N) = ∆1(N, {1},Z), these calcula-
tions also show that Γ1(N) is normal in Γ0(N).

Suppose γ−1αγΓ1(N) = γ−1α′γΓ1(N) for some α′ ∈ ∆n(N, {1},Z). Then, there exists a
γ1 ∈ Γ1(N) such that αγγ1 = α′γ. Multiplying on the right by γ−1, we get αγγ1γ

−1 = α′. Since
Γ1(N) is normal in Γ0(N), γγ1γ

−1 ∈ Γ1(N) so that αΓ1(N) = α′Γ1(N). This shows that α′ is
another representative for the same coset as α. So if {αj} is a set of coset representatives for
Γ1(N), then {γ−1αjγ} is a set of representatives as well. Thus, by Proposition 2.6 and Proposition
2.7,

(Tnf)|[γ]k =
(
n(k/2)−1

∑
f |[αj]k

)
|[γ]k = n(k/2)−1

∑
f |[γ−1αjγ]k = Tnf,

as desired.

Next, by Proposition 3.5, we can write Tnf =
∑∞

m=0 am(Tnf)qm where

am(Tnf) =
∑

gcd(a,N)=1
a>0, a|gcd(m,n)

ak−1anm/a2(f).

As n ∈ Z+ is fixed and a goes through the elements of a subset of the set of divisors of n,
we always have 1 ≤ a ≤ n so that ak−1 ≤ nk−1. Furthermore, as T ∈ Γ0(N), f has period 1 by
Remark 2.9 so that Lemma 2.10 implies |anm/a2(f)| ≤ c(nm/a2)r = cnr

a2r
mr ≤ (cnr)mr for some

positive constants c and r. Let N ∈ Z+ denote the number of terms in the sum. Then, if we let
C be a new constant such that C = Nnk−1cnr > 0, we see that

am(Tnf) =
∑

gcd(a,N)=1
a>0, a|gcd(m,n)

ak−1anm/a2(f) ≤
∑

gcd(a,N)=1
a>0, a|gcd(m,n)

nk−1(cnr)mr = Nnk−1cnrmr = Cmr,
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which shows that Tnf ∈Mk(Γ0(N)) by Lemma 2.10.

The following is an immediate application of Proposition 2.6 and Proposition 3.6.

Corollary 3.6.1. The Hecke operator Tn is a linear operator from Mk(Γ0(N)) to Mk(Γ0(N)).

Proposition 3.7. For f ∈Mk(Γ0(N)), Tn commutes with αN = ( 0 −1
N 0 ) whenever gcd(n,N) = 1.

Proof. Let f ∈ Mk(Γ0(N)) ⊆ Mk(Γ1(N)). Lemma 2.4 tells us that αa,b (which is defined only
when gcd(n,N) = 1) form a complete set of coset representatives for Γ1(N) in ∆n(N, {1},Z).
Then, by our definition of Tnf and Proposition 2.7, we have

(Tnf)|[αN ]k = n(k/2)−1
∑
a,b

(f |[αa,b]k)|[αN ]k = n(k/2)−1
∑
a,b

f |[αa,bαN ]k

= n(k/2)−1
∑
a,b

f |[σnαNσa
(
a b
0 d

)
]k = n(k/2)−1

∑
a,b

f |[αNσa
(
a b
0 d

)
]k

since f |[σn]k = f as σn ∈ Γ0(N).

On the other hand, Lemma 2.4 also tells us that σa

(
a b
0 d

)
form a complete set of coset

representatives for Γ1(N) in ∆n(N, {1},Z). Note that f |[αN ]k ∈ Mk(Γ0(N)) ⊆ Mk(Γ1(N)) by
Lemma 2.15. Thus, we have

Tn(f |[αN ]k) = n(k/2)−1
∑
a,b

(f |[αN ]k)|[σa
(
a b
0 d

)
]k =

∑
a,b

f |[αNσa
(
a b
0 d

)
]k = (Tnf)|[αN ]k ,

as desired.

4 Main Theorem

In this section, we will prove our main theorem:

Main Theorem (Jacobi’s Four Squares Theorem). For any positive integer n, let an denote
the number of ways n can be expressed as a sum of four integral squares. Then,

an =

{
8σ(n) for n odd,

24σ(n0) for n = 2rn0 even, n0 odd.

As an immediate corollary of our main theorem, we obtain Lagrange’s Theorem:

Corollary (Lagrange’s Four Squares Theorem). Every nonnegative integer can be expressed
as a sum of four integral squares.
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Our strategy is to consider a modular form that is the generating series for the number of ways
an integer n can be expressed as a sum of four squares.

We define the theta-function:

Θ :=
∑
n∈Z

qn
2

for z ∈ H, q = e2πiz,

and observe that

Θ4 =
∑

n1,n2,n3,n4∈Z

qn1
2

qn2
2

qn3
2

qn4
2

=
∑

n1,n2,n3,n4∈Z

qn1
2+n2

2+n3
2+n4

2

=
∑
n∈Z

anq
n,

where an is the number of ways n can be written as a sum of four squares. Hence, it will suffice to
confirm our formula for the nth Fourier coefficient of Θ4.

Proposition 4.1. Θ4 ∈M2(Γ0(4)).

Proof. First, we show weight-2 invariance under Γ0(4). By Proposition 2.13, it suffices to check
weight-2 invariance under the generators −I, T , and ST 4S of Γ0(4) that we found in Proposition
2.3.

To show invariance under [−I]2, we check that Θ4(z)|[−I]2 = (−1)−2Θ4(z) = Θ4(z).

Next, to show invariance under [T ]2, we have

Θ4(z)|[T ]2 = (1)−2Θ4(z + 1) =
∑
n∈Z

ane
2πin(z+1) =

∑
n∈Z

ane
2πinze2πin =

∑
n∈Z

ane
2πinz = Θ4(z).

Finally, to show invariance under [ST 4S]2, we begin by observing that ST 4S = 1
4
α4Tα4, which

follows directly from matrix multiplication. Then,

Θ4(z)|[ST 4S]2 = Θ4(z)|[1
4
α4Tα4]2 = (Θ4(z)|[1

4
I]2)|[α4Tα4]2

by Proposition 2.7. Note that Θ4(z)|[1
4
I]2 = det(1

4
I)2/2(1

4
)−2Θ4( z/4

1/4
) = Θ4(z). Thus, we have

Θ4(z)|[ST 4S]2 = Θ4(z)|[α4Tα4]2 = ((Θ4(z)|[α4]2)|[T ]2)|[α4]2.

Equation (3.5) on page 124 in [Koblitz (1993)] tells us that

Θ2|[α4]1 = −iΘ2. (4)

Squaring the left side of equation (4), we get

(Θ2|[α4]1)
2 = (det (α4)

1/2(4z)−1Θ2(α4z))2 = det (α4)(4z)−2Θ4(α4z) = Θ4|[α4]2.

Squaring the right side of equation (4), we get (−iΘ2)2 = −Θ4. Thus, we have obtained the
identity

Θ4|[α4]2 = −Θ4. (5)
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This means that Θ4 is an eigenform (with associated eigenvalue −1) of [α4], which will be a useful
piece of information going forward.

Back to our problem at hand, we have

Θ4(z)|[ST 4S]2 = ((Θ4(z)|[α4]2)|[T ]2)|[α4]2 = ((−Θ4)|[T ]2)|[α4]2

by equation (5). Since we’ve shown that Θ4 is invariant under [T ]2, this equals −Θ4|[α4]2, which
is again Θ4 by equation (5). We’ve shown that Θ4(z)|[ST 4S]2 = Θ4(z), as desired.

Next, observe that as negative integers cannot be expressed as a sum of four squares, we can
write

Θ4 =
∑
n∈Z

anq
n =

∞∑
n=0

anq
n.

Given n ∈ Z+, for n to be expressed as a sum of four squares a2 + b2 + c2 + d2, it must be that
−n < a, b, c, d ≤ n (in fact, we could say −

√
n ≤ a, b, c, d ≤

√
n). There are (2n)4 possible ways to

select 4 numbers a, b, c, d in this range, possibly with repetition, and taking order into account. As
these (2n)4 possible selections need not all satisfy a2 + b2 + c2 + d2 = n, we see that |an| ≤ 16n4.
By Lemma 2.10, we conclude that Θ4 ∈M2(Γ0(4)).

We’d like to know more about the space M2(Γ0(4)) that contains our generating series Θ4. We
now find another function in M2(Γ0(4)), which will turn out to form a basis for the space together
with Θ4.

Proposition 4.2. The function F given by F :=
∑

odd n>0 σ(n)qn lies in M2(Γ0(4)).

Proof. We begin by checking weight-2 invariance under the generators −I, T , and ST 4S of Γ0(4).

Invariance under [−I]2 is trivial as F (z)|[−I]2 = (−1)−2F (z) = F (z). Invariance under [T ]2 is
also easily seen as

F (z)|[T ]2 = F (z + 1) =
∑

odd n>0

σ(n)e2πin(z+1) =
∑

odd n>0

σ(n)e2πinze2πin =
∑

odd n>0

σ(n)e2πinz = F (z).

To show invariance under [ST 4S]2, we need a few lemmas.

We define the Eisenstein series of weight 2 as follows:

E2(z) := 1− 24
∞∑
n=1

σ(n)qn.

Lemma 4.3. F (z) = − 1
24

(E2(z)− 3E2(2z) + 2E2(4z))
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Proof. By our definition of E2(z), we have

E2(z)− 3E2(2z) + 2E2(4z) = 1− 24

(
∞∑
n=1

σ(n)e2πinz

)
− 3

(
1− 24

∞∑
n=1

σ(n)e4πinz

)

+ 2

(
1− 24

∞∑
n=1

σ(n)e8πinz

)

= −24

((
∞∑
n=1

σ(n)e2πinz

)
− 3

(
∞∑
n=1

σ(n)e4πinz

)
+ 2

∞∑
n=1

σ(n)e8πinz

)

= −24

( ∞∑
n=1

σ(n)qn

)
− 3

 ∑
n>0, 2|n

σ(n/2)qn

+ 2
∑

n>0, 4|n

σ(n/4)qn

 .

Thus, the coefficient of qn is given by

an =


−24(σ(n)− 3σ(n/2) + 2σ(n/4)) if 4 | n ,

−24(σ(n)− 3σ(n/2) if 2 | n and 4 - n ,

−24σ(n) if 2 - n .

If 4 | n, write n = 2tr where 2 - r and t > 1. Then,

an = −24(σ(2tr)− 3σ(2t−1r) + 2σ(2t−2r)).

As σ is multiplicative and gcd(2, r) = 1, this equals

−24σ(r)(σ(2t)− 3σ(2t−1) + 2σ(2t−2) = −24σ(r)

(
t∑

j=0

2j − 3
t−1∑
j=0

2j + 2
t−2∑
j=0

2j

)

= −24σ(r)

((
3
t−2∑
j=0

2j − 3
t−2∑
j=0

2j

)
+ 2t−1 + 2t − 3(2t−1)

)
= 0.

If 2 | n and 4 - n, write n = 2r where 2 - r. Then,

an = −24(σ(2r)− 3σ(r)) = −24σ(r)(σ(2)− 3σ(1)) = −24σ(r)(3− 3) = 0.

We conclude that F (z) =
∑

odd n>0 σ(n)qn = − 1
24

(E2(z)− 3E2(2z) + 2E2(4z)).

Lemma 4.4. Let g(z) = f(nz) for some integer n, and let γ = ( a bc d ) ∈ SL2(Z). Then, g(z)|[γ]k =
f(nz)|[

(
a nb
c/n d

)
]k.

Proof. We have

f(nz)|[
(

a nb
c/n d

)
]k =

( c
n

(nz) + d
)−k

f

(
anz + nb
c
n
(nz) + d

)
= (cz + d)−kf

(
n · az + b

cz + d

)
= (cz + d)−kg

(
az + b

cz + d

)
= g(z)|[γ]k.
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Lemma 4.5. For all a ∈ Z, E2(ST
−aSz) = (az + 1)2E2(z)− 6ai

π
(az + 1).

Proof. By Proposition 7 in [Koblitz (1993)], we have

E2(ST
−aSz) = E2(S(−a− 1/z)) = E2

(
−1

−a− 1/z

)
= (a+ 1/z)2E2(−a− 1/z) +

6

πi
(−a− 1/z) .

Since E2 has period 1, E2(−a− 1/z) = E2(−1/z) = E2(Sz), so

E2(ST
−aSz) = (a+ 1/z)2

(
z2E2(z) +

6z

πi

)
+

6

πi
(−a− 1/z)

= (az + 1)2E2(z) +
6(az + 1)2

πiz
− 6(az + 1)

πiz

= (az + 1)2E2(z) +
6(az + 1)(az)

πiz

= (az + 1)2E2(z)− 6ai

π
(az + 1).

By Lemma 4.3 and Lemma 4.4, as well as noting that ST 4S =
( −1 0

4 −1
)
, we have

−24F (z)|[ST 4S]2 = E2(z)|[ST 4S]2 − 3E2(2z)|[
(
−1 2(0)
4/2 −1

)
]2 + 2E2(4z)|[

(
−1 4(0)
4/4 −1

)
]2

= E2(z)|[ST 4S]2 − 3E2(2z)|[ST 2S]2 + 2E2(4z)|[STS]2.

By Lemma 4.5, this is equal to

1

(4z − 1)2

(
(−4z + 1)2E2(z) +

24i

π
(−4z + 1)

)
− 3

1

(4z − 1)2

(
(−4z + 1)2E2(2z) +

12i

π
(−4z + 1)

)
+ 2

1

(4z − 1)2

(
(−4z + 1)2E2(4z) +

6i

π
(−4z + 1)

)
= E2(z)− 24i

π

1

4z − 1
− 3

(
E2(2z)− 12i

π

1

4z − 1

)
+ 2

(
E2(4z)− 6i

π

1

4z − 1

)
= E2(z)− 3E2(2z) + 2E2(4z)− 24i

π(4z − 1)
+

36i

π(4z − 1)
− 12i

π(4z − 1)

= −24F (z),

as desired.

We can write F (z) =
∑∞

n=0 anq
n, where |an| = an = 0 ≤ 1 · n2 for all even n, and

|an| = an = σ(n) ≤ 1 + 2 + · · ·+ n =
n(n+ 1)

2
=
n2 + n

2
≤ 2n2

2
= 1 · n2

for all odd n ∈ Z+. By Lemma 2.10, we conclude that F ∈M2(Γ0(4)).

Proposition 4.6. The set {Θ4, F} is a basis for M2(Γ0(4)).
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Proof. A computation in SAGE shows that M2(Γ0(4)) is two-dimensional [SageMath]. It therefore
suffices to show that Θ4 ∈ M2(Γ0(4)) and F ∈ M2(Γ0(4)) are linearly independent. Suppose
aΘ4(z) = bF (z) for some a, b ∈ C. As z → i∞, note that aΘ4(z) = a(a0(Θ

4)) = a(1) = a and
bF (z) = b(a0(F )) = b(0) = 0 give a = 0. Since F (z) is not the zero function, b = 0 as well. Hence,
Θ4 and F are linearly independent, and we conclude that {Θ4, F} is a basis for M2(Γ0(4)).

Remark 4.7. The dimension of M2(Γ0(4)) can also be calculated by using Theorem 3.5.1 in [Dia-
mond and Shurman (2005)], though this formula is rather complicated and requires the introduction
of new terminology.

Proposition 4.8. TnF = σ(n)F for all odd n > 0.

Proof. As F ∈ M2(Γ0(4)), Corollary 3.4.1 shows that an(T2F ) = a2n(F ). Since a2n(F ) = 0 for
all n by the definition of F , we conclude that T2F = 0; that is, F is an eigenform for T2 with
associated eigenvalue 0.

Next, as T2 is a linear operator from M2(Γ0(4)) to M2(Γ0(4)) by Corollary 3.6.1, we can write

T2(16F + Θ4) = 16T2F + T2Θ
4 = 0 + T2Θ

4 .

We know that F and Θ4 span M2(Γ0(4)) by Proposition 4.6. Since T2Θ
4 ∈ M2(Γ0(4)), we can

write T2Θ
4 = aΘ4 + bF for some a, b ∈ C. And since Θ4 ∈M2(Γ0(4)), we have a0(T2Θ

4) = a0(Θ
4)

by Corollary 3.4.1, whereas a0(F ) = 0. Hence, a = 1.
Next, we compare the ath1 coefficients to see that a1(T2Θ

4) = a2(Θ
4) = 24, whereas a1(Θ

4) = 8 and
a1(F ) = 1. Thus, we have 8a+ 1b = 8 + b = 24, implying b = 16.
We have shown that

T2(16F + Θ4) = T2Θ
4 = 16F + Θ4 . (6)

Hence, 16F + Θ4 is an eigenform for T2 with associated eigenvalue 1.

For odd n, Proposition 3.2 shows that Tn commutes with T2 as gcd(2, n) = 1. This means
TnT2f = T2Tnf for all f ∈ M2(Γ0(4)). Let f be an eigenform of T2 so that T2f = λ2f for some
λ2 ∈ C. Then,

T2(Tnf) = Tn(T2f) = Tn(λ2f) = λ2(Tnf) .

In other words, if f is an eigenform of T2, so is Tnf , and with the same associated eigenvalue.
Since M2(Γ0(4)) is two-dimensional and T2 has two distinct eigenvalues 0 and 1, it follows that T2
has two one-dimensional eigenspaces associated with the eigenvalues 0 and 1. Hence, the eigenspace
of T2 associated with λ2 is one-dimensional, meaning Tnf = λnf for some λn ∈ C. We’ve shown
that any eigenform of T2 is also an eigenform of Tn, where n is odd.

In particular, since F is an eigenform for T2, it follows that F is an eigenform for all Tn when
n is odd. Then, for a given odd n, TnF = λnF for some constant λn. By Proposition 3.5,
a1(TnF ) = an(F ). We also know that a1(TnF ) = a1(λnF ) = λna1(F ), so an(F ) = λna1(F ). This
means

σ(n) = λnσ(1) = λn .

Proposition 4.9. TnΘ4 = σ(n)Θ4 for odd n > 0.
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Proof. Let n > 0 be odd. We’ll first show that Θ4 is an eigenform for Tn. Equation (5) shows that
Θ4 is an eigenform of [α4] with associated eigenvalue−1. Using the identity F (z)|[α4]2 = − 1

16
Θ4+F

(see Exercise 15(c) in [Koblitz (1993)]), we also have

(Θ4 − 32F )|[α4]2 = Θ4|[α4]2 − 32F |[α4]2 = −Θ4 − 32

(
− 1

16
Θ4 + F

)
= Θ4 − 32F ,

showing that Θ4 − 32F is another eigenform of [α4] with associated eigenvalue 1.

By Proposition 3.7, gcd(n, 4) = 1 implies Tn commutes with [α4]. As in the proof of Propo-
sition 4.8, this means that if f is an eigenvector of [α4], so is Tnf , and with the same associated
eigenvalue. Furthermore, [α4] having two distinct eigenvalues implies that any eigenform of [α4] is
also an eigenform of Tn. In particular, Θ4 must be an eigenform of Tn.

Next, equation (6) shows that Θ4 + 16F is an eigenform for T2. Hence, by our proof of
Proposition 4.8, it’s also an eigenform for Tn for all odd n. Thus,

Tn(Θ4 + 16F ) = λ(Θ4 + 16F )

for some λ ∈ C. Then,

TnΘ4 + 16TnF = TnΘ4 + 16σ(n)F = λΘ4 + 16λF

⇒ λΘ4 − TnΘ4 = 16σ(n)F − 16λF .

Since Θ4 is an eigenform for Tn, TnΘ4 = λ′Θ4 for some λ′ ∈ R so that we have

(λ− λ′)Θ4 = 16(σ(n)− λ)F .

As Θ4 and F are linearly independent by Proposition 4.6, we must have λ = λ′ and σ(n) = λ. It
follows that λ = λ′ = σ(n) and that TnΘ4 = σ(n)Θ4.

4.1 Proof of the Main Theorem

We now have all the pieces needed to complete the proof of our Main Theorem.

By Proposition 3.5, an(Θ4) = a1(TnΘ4) = a1(σ(n)Θ4) = σ(n)a1(Θ
4) = 8σ(n) when n is odd.

Next, note that when n > 0 is even, an(Θ4+16F ) = an(Θ4)+16an(F ) = an(Θ4) since an(F ) = 0
for all even n by the definition of F . On the other hand, since an(F ) = σ(n) for odd n > 0, we
get an(Θ4 + 16F ) = an(Θ4) + 16σ(n) when n is odd. Thus,

an(Θ4 + 16F ) =

{
an(Θ4) if n is even,

an(Θ4) + 16σ(n) if n is odd.
(7)

Recall that T2Θ
4 = Θ4 + 16F by equation (6), and compare this to

an(T2Θ
4) = a2n(Θ4) . (8)
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Claim: an(Θ4) = 24σ(n0) for n = 2rn0 with r ∈ Z+ and n0 odd.

Proof: We will use induction on r. When r = 1, equation (8) gives us a21n0
(Θ4) = an0(T2Θ

4).
Since T2Θ

4 = Θ4 + 16F , we have an0(T2Θ
4) = an0(Θ

4 + 16F ). From equation (7), we see that this
equals an0(Θ

4) + 16σ(n0) when n0 is odd. Finally, as we have shown that an0(Θ
4) = 8σ(n0), we

have
a2n0(Θ

4) = 8σ(n0) + 16σ(n0) = 24σ(n0) .

Now, suppose the claim is true for some r ∈ Z+, and consider a2r+1n0
(Θ4). Following the

arguments in our base case, we have

a2r+1n0
(Θ4) = a2rn0(T2Θ

4) = a2rn0(Θ
4 + 16F ) = a2rn0(Θ

4) ,

which equals 24σ(n0) by our inductive hypothesis, as desired. 4

We’ve obtained the following formula for an(Θ4), which is the number of ways n can be ex-
pressed as a sum of four integral squares:

an =

{
8σ(n) for n odd,

24σ(n0) for n = 2rn0 even, n0 odd.
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