
Oberlin Oberlin

Digital Commons at Oberlin Digital Commons at Oberlin

Honors Papers Student Work

2021

Quality of SQL Code Security on StackOverflow and Methods of Quality of SQL Code Security on StackOverflow and Methods of

Prevention Prevention

Robert Klock
Oberlin College

Follow this and additional works at: https://digitalcommons.oberlin.edu/honors

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Klock, Robert, "Quality of SQL Code Security on StackOverflow and Methods of Prevention" (2021).
Honors Papers. 835.
https://digitalcommons.oberlin.edu/honors/835

This Thesis - Open Access is brought to you for free and open access by the Student Work at Digital Commons at
Oberlin. It has been accepted for inclusion in Honors Papers by an authorized administrator of Digital Commons at
Oberlin. For more information, please contact megan.mitchell@oberlin.edu.

https://digitalcommons.oberlin.edu/
https://digitalcommons.oberlin.edu/honors
https://digitalcommons.oberlin.edu/students
https://digitalcommons.oberlin.edu/honors?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.oberlin.edu/honors/835?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F835&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:megan.mitchell@oberlin.edu

Quality of SQL Code Security on StackOverflow
and Methods of Prevention

Robert Klock
Oberlin College

Dr. Cynthia Taylor
Oberlin College

Abstract

This paper explores the frequency at which SQL/PHP
posts on the website Stackoverflow.com contain code
susceptible to SQL Injection, a common database vulner-
ability. Specifically, we analyze whether other users give
notice of the vulnerability or provide an answer that is
secure. The majority of questions analyzed were vulner-
able to SQL Injection and were not corrected in their an-
swers or brought to the attention of the original poster. To
mitigate this, we present a machine learning bot which
analyzes the poster’s code and alerts them of potential
injection vulnerabilities, if necessary.
Keywords: StackOverflow, SQL Injection, security, text
mining, machine learning

1 Introduction

StackOverflow is a Q&A website for programmers to ask
and answer questions pertaining to computer science, of-
tentimes for programming and software development. It
is used by experts and beginners alike and provides an
environment for the exchange of ideas and advice. How-
ever, the ease of use associated with StackOverflow can
be harmful when provided code is insecure or security
vulnerabilities go ignored or undetected by viewers. As
presented by Fischer et al. in [1], code snippets from
StackOverflow are continuously used as is in real world
applications and often contain security vulnerabilities.
Posts related to databases on StackOverflow frequently
do not include discussion of potential Injection vulnera-
bilities in posted code when appropriate.

This paper explores the practices around insecure SQL
and PHP code on StackOverflow, specifically the amount
of code snippets that are injectable and the frequency at
which answers and comments point out or correct those
issues. We outline the behaviors associated with inse-
cure SQL and PHP posts on StackOverflow and give an
outline of various classification techniques to detect and

prevent database injection.

2 Motivation

Injection, including SQL Injection, is the number one
web application security vulnerability as of 2020 ac-
cording to the Open Web Application Security Project®
(OWASP) nonprofit [6].

A SQL Injection occurs when a user with malicious
intentions gains access to a website’s database by ex-
ploiting poor handling of user input. Successful injec-
tions can result in access to confidential database infor-
mation and deletion or modification of data, among other
turnouts. SQL Injection sets itself apart from other secu-
rity vulnerabilities because of its relatively straightfor-
ward prevention methods (Real Escape, Bounded User
Input, etc.) and subpar discussion in university-level
database textbooks [7]. The combination of lack of ed-
ucation surrounding SQL Injection prevention, ease and
frequency of use of code provided on StackOverflow, and
relatively uncomplicated solution of injection vulnerabil-
ities led to the research project outlined in this paper.

We show that PHP/SQL code on StackOverflow is fre-
quently insecure and not mentioned or prevented in an-
swers or comments. To mitigate this, we present a bot
that automatically detects, warns, and educates Stack-
Overflow users about the possibility of SQL Injection
in their code. While the specific rate at which software
developers copy provided code into production is not
known, it is clear that it is a somewhat common practice
despite its potential danger.

3 Related Work

In [1], Fischer et al. discuss how StackOverflow users
oftentimes copy the code provided to them online di-
rectly into their production software. In particular, they
show the frequency at which code from StackOverflow

was used as is in Android applications available on the
Google Play app store. Alarmingly, 15.4% of the 1.3 mil-
lion applications analyzed contained a security-related
code snippet. More so, 97.9% of those code snippets
were insecure, defined as:

Snippets that contained obviously insecure
code, e.g. using outdated algorithms or static
initialization vectors and keys for symmetric
cryptography, weak RSA keys for asymmetric
cryptography, insecure random number gener-
ation, or insecure SSL/TLS implementations.

Despite their inherent insecurity, these code snippets still
made it into production applications, which could be po-
tentially devastating.

In [7], Taylor and Sakharkar discuss the coverage of
SQL Injection and prevention in undergraduate database
courses. In the top 50 computer science programs in the
United States (at the time of writing) seven textbooks
were used in total. Of those, only two explicitly men-
tioned SQL Injection. Others even provided examples
that are susceptible to Injection.

4 Methods

4.1 Obtaining Data
The entirety of StackOverflow was downloaded over the
course of many days using curl. This was done for ease
of querying as we were specifically looking for pages re-
lated to SQL or PHP. Since the database was only down-
loaded once, all posts that were analyzed during this
project were at least a year old (most fell into the pre-
2016 years). Although some tools and paradigms un-
dergo drastic changes over the course of a year, SQL
Injection-vulnerable practices do not change as fast, so
the gap in analyses poses little disadvantage to our study.
Additionally, pages on StackOverflow are likely to be
stagnant after their first year, which provided an opportu-
nity for us to observe them consistently across different
trials.

Later in the paper we will outline the machine learn-
ing methods used to classify vulnerable code snippets.
The model presented in this paper utilized batch learn-
ing, which means a set of data was trained and tested on
and no new data was passed in. Another training pos-
sibility is referred to as online learning, where a model
learns on some data and is continuously retrained on new
data. This would be the case if we periodically pulled
data from StackOverflow for retraining, but we did not
implement that.

The full data obtained from StackOverflow had mul-
tiple issues of clarity. First, it was human-produced in
an uncontrolled environment. Questions may be unclear,

comments may be incorrect, etc. With that, the code
we obtained was still difficult to analyze. It is rare for
someone to post the entirety of their application or code-
base in a single StackOverflow post, so we only had a
small glimpse into the practices going on (sometimes,
though, these were the most critical parts of their ap-
plication). Additionally, programmers may include ir-
relevant comments in their code that contain terms that
could otherwise be interpreted as SQL code. With this,
code was extensively cleaned to remove irrelevant char-
acters (queries like SELECT were kept, but the $ before
$SELECT would be taken away).

4.1.1 Qualitative Coding

In order to analyze the corpus of StackOverflow posts
effectively, Eliana Grossof developed a qualitative cod-
ing criteria for quick and consistent analysis and catego-
rization. This method involves creating a series of bi-
nary variables to describe a post (i.e. relevant, contains
a code snippet, is SQL-injectable). Throughout the du-
ration of the project, we analyzed 1117 StackOverflow
posts (questions, answers, and comments) and qualita-
tively coded them. Then, each post was re-coded in-
dependently by another team member for verification.
If a mismatch occurred in the code representation of a
post between two people they met and discussed a final
code representation of the post. StackOverflow allows
for multiple answers for a single post. When we refer to
the answer of a post, we are referring to the answer with
the most upvotes. All other answers get categorized with
“everything else”.

R SQLI RE L CO P MSQLI BUI

1 1 0 0 1 0 0 0

Table 1: Qualitative codes for the code snippet in Figure
1 indicating the values of relevancy (R), vulnerability to
SQL Injection (SQLI), use of Real Escapes (RE), exter-
nal links (L), presence of a code snippet (CO), use of at
least one prepared statement (P), mention of SQL Injec-
tions (MSQLI), and use of bounded user input (BUI).

Table 1 shows the corresponding qualitative codes for
the code snippet of a StackOverflow post shown in Fig-
ure (1).

5 Detect-and-Warn Bot Motivation and
Approaches

One behavioral pattern emerged upon analysis of hun-
dreds of comments: oftentimes when people had glaring
vulnerabilities in their code, commenters would simply

2

Figure 1: An example code snippet from a StackOverflow post with its corresponding qualitative code representation
shown in Table 1.

tell the poster to research SQL Injection on their own in-
stead of providing background information, links to re-
sources, or a secure solution. To alleviate some of the
burden of trying to find helpful information, our bot will
not only detect instances of vulnerable code, but also pro-
vide some educational resources for the poster to educate
themselves.

A variety of approaches were explored to implement
the bot to detect and warn StackOverflow users of Injec-
tion vulnerabilities in their code. These include Linear
Support Vector Machines (SVMs), Naive Bayes, Deci-
sion Trees, and deep neural networks. Extensive data
pre-processing was used to transform the code from
StackOverflow posts into a format suitable for machine
learning algorithms. The pipeline to obtain data for the
models consisted of downloading StackOverflow pages,
gathering the code from each page by looking for code
blocks in HTML posts which were tagged with 〈code〉
tags, and cleaning and encoding that text into vectors us-
ing TF-IDF vectorization.

6 Encoding with TF-IDF

Machine learning algorithms cannot easily deal with raw
natural language. Instead, it must be transformed into
numerical format. TF-IDF Vectorization is one of the

ways we can put words into a format that classification
algorithms can work with. TF stands for term frequency,
which is the amount of a time a term occurs in a docu-
ment. The more times a term appears in a document, the
larger its term frequency. IDF stands for inverse docu-
ment frequency, which is the frequency of that term ap-
pearing in other documents. The advantage of using TF-
IDF vectorization over other “bag of words” representa-
tions is that TF-IDF places less emphasis on terms that
appear frequently over all documents in a corpus. For
example, the term “a” occurs frequently in many texts
and is relatively uninteresting (it does not tell us much
about how a given sequence of terms is different from
others). Terms with a high term frequency and document
frequency (i.e. they occur many times in each document
of a corpus) are called “stop words” and get encoded
with a small weight with TF-IDF vectorization. Impor-
tantly, TF-IDF embeddings do not preserve the ordering
of words in a document.1

So, “I love CS, CS hates me” yields the same encoding
as “I hate CS, CS loves me”. This poses issues in situa-
tions where ordering is critical, but we found reasonable

1Note: In our implementation, we make use of a TF-IDF parameter
that takes in a corpus of stop words and ignores any instances of them.
This allows the model to ignore unhelpful terms, even if those terms
may not be considered “stop words” in the data. We chose to ignore all
typical stop words in the English language.

3

success in classification of code regardless. Implement-
ing a bot that uses an order-preserving method of text
embedding has merit for a future project.

T F(t,d) =
ft,d

∑ t ′ ∈ d ft ′,d
(1)

IDF(t,d) = log
N

|d ∈ D : t ∈ d|
(2)

T FIDF(t,d,D) = T F(t,d)∗ IDF(t,D) (3)

Equation (1) shows the computation of term frequency
given a term t and document d. ft,d is the frequency of a
particular term in the given document, it is divided by the
total amount of unique terms appearing in the given doc-
ument. Equation (2) is the calculation of the IDF, which
is the logarithmically scaled inverse ratio of documents
containing the given term over all documents in the cor-
pus N. TF-IDF is the product of these two calculations.

In natural language, the significance or meaning of a
term is not always explicitly unique to the term itself.
Sometimes the terms around a given term affect its mean-
ing. This is especially the case in Bag of Words embed-
dings like TF-IDF. Since order is not preserved, “The sky
is blue, the sky is not green” is encoded the same as “The
sky is not blue, the sky is green”. These sentences have
drastically different meanings because of the location of
the “not”. We can increase the number of “grams” to
improve on this and introduce some order into our em-
bedding. In the original sentence (with one gram) the re-
spective grams are [The, sky, is, blue, not, green]. With
two grams, we add the grams [The sky, sky is, is blue,
blue the, the sky, is not, not green]. This is a bit easier to
decipher, and it becomes clear that the “not” is directly
related to the word “green”. We achieved best perfor-
mance with one to three grams for the Linear SVM.

The utilization of various amounts of grams greatly in-
creases the amount of terms in the resulting vector. For-
tunately, the implementation of TF-IDF vectorization we
use takes two other parameters: maximum document fre-
quency and minimum document frequency. Maximum
document frequency disqualifies grams that appear in
more than a certain percentage of documents (80%, for
example), limiting the amount of stop words that make
their way into the eventual vectorization. Minimum doc-
ument frequency disqualifies grams that do not appear
in at least a certain amount of documents (for example, a
term must appear in at least 50 documents). Both of these
parameters are tuned by hand and reasonable values can
be found via grid search.

7 Classification Techniques

A few different techniques for classification were ex-
plored over the course of this project, including Linear
SVMs, Naive Bayes, Decision Trees, and deep neural
networks. Each implementation was built out by my-
self, with the exception of Naive Bayes which was im-
plemented by Sam Fertig. Evans Muzulu assisted in
the creation of the Decision Trees model. All models
were trained on the same batch of training data (using
495 questions) and evaluated during training using k-
fold cross-validation. After analyzing the training per-
formance of each model (its cross-validation accuracy),
Linear SVM and deep neural networks were selected for
further fine-tuning to improve performance.

Cross-validation, specifically k-fold cross-validation,
is a technique used to better evaluate the performance of
a model on its training data. During training, the train-
ing set is split up into smaller chunks called folds. Then,
the model is trained on n-1 folds and validated on the fi-
nal fold. The validation accuracy of all classifiers was
averaged across folds to get a mean validation accuracy.

7.1 Linear SVM

We chose to work with Linear SVMs because of their
ability to perform well on complex and small datasets
and their capability to generalize well with soft mar-
gin classification [2]. Unlike traditional logistic regres-
sion models, Linear SVMs work by finding a decision
boundary between two classes that maximizes the dis-
tance from each class. This forms what is referred to as
a “wide road”. This, paired with soft-margin classifica-
tion, led to a model that was fairly accurate at classifying
vulnerable code blocks from StackOverflow.

As opposed to having a hard-set boundary dividing
classes from each other, soft margin classification allows
for some outliers of one class to belong to another class.
This makes a model robust to outliers and increases its
likelihood to generalize well to new data. The nature
of our problem and data is not so clear cut (there are
no hard-set rules for when code is or is not SQL In-
jectable, and not all information is accessible) so soft
margin classification comes in handy when analyzing
data. We made use of a relatively small hyperparame-
ter value of C, which modulates the width of the “road”
(larger numbers, like 100, shrinks the width). This led to
more margin violations but leaves room for the model to
generalize to more data.

Analyzing the accuracy of a model is not always the
best way to understand its full performance. Two better
metrics include precision and recall, which comprise the

4

Figure 2: Confusion matrix of the Linear SVM model.
From top left clockwise are the total occurrences of true
negatives, false positives, true negatives, and false nega-
tives.

axes of a confusion matrix plot for a model.

precision =
True Positives

True Positives + False Positives
(4)

recall =
True Positives

True Positives + False Negatives
(5)

The equations for precision and recall are shown in (4)
and (5) respectively. The precision keeps track of how
often the model made a correct positive classification.
Recall measures the proportion of correctly identified
positive instances. Together, they make up the vertical
and horizontal axes in Figure (2). During training, we
made use of k-fold cross validation with a fold value of
8. Overall, the SVM’s validation accuracy was 84% and
its test accuracy dropped to 74.2 %. The confusion ma-
trix outlining the ways in which the Linear SVM classi-
fied code is shown in Figure (2).The Linear SVM’s pre-
cision score was 82% and its recall score was 89%. We
did not mind having many false negatives as this would
prevent the bot from over alerting StackOverflow users
and eventually being taken down on account of spam.
With that said, the confusion matrix top left and bottom
right corners are important, as they indicate the true pos-
itives and negatives. The bottom left quadrant indicates
the frequency of false positives. Those are the instances
where our model was not confident and misclassified an
injectable snippet as safe. Our team feels this is better
than potentially overwarning people whose code is actu-

ally secure (which would add more instances to the top
right corner).

7.2 Naive Bayes

Naive Bayes classifiers make use of Bayes’ Theorem,
which is shown in (6)2. Similar to Decision Trees, Naive
Bayes models learn which attributes are associated with
high probabilities of belonging to a certain class. In our
case, certain grams may be more frequently used in SQL
Injectable code than others. When that gram appears in
a new instance, it may push the classifier closer to be-
lieving that instance is SQL Injectable. This process of
combining the different probabilities of different grams
belonging to each class is continued for grams in new
data, by which a final classification is made [5]. Simi-
lar to our method of embedding text into vectors, Naive
Bayes does not make use of order of probabilities (this is
why it is called Naive). This may seem like an oversim-
plification to work with, but in practice it has been shown
to perform well.

In our case, however, Naive Bayes did not perform
well. It predicted that all instances in the validation set
were SQL Injectable (see Figure (3)). In some cases,
this was a correct prediction. However, we do not want
to scare every StackOverflow user that posts about SQL
into thinking that their code is insecure, so we did not
continue with the Naive Bayes model.

P(h|D) =
P(D|h)∗P(h)

P(D)
(6)

7.3 Decision Trees

As presented in [5], Decision Trees work by sys-
tematically sorting an instance into different possible
categorizations based on the presence of certain at-
tributes in said instance. The various combinations of
attributes that comprise a given instance form a path
from the root of the tree to a leaf, by which a final
classification is made.

A Decision Tree is formed from training data by
analyzing the entropy and information gain of a certain
attribute which adjusts where the attribute is analyzed in
the tree (higher information gains correspond to deci-
sions closer to the root). The entropy and information
gain of an attribute A in a set S are shown in equations

2P(h|D) is the posterior probability: that hypothesis h is true given
D. P(D|h) is the probability of D given h is true. P(h) is the prob-
ability of h being true (also called prior probability), and P(D) is the
probability of D regardless of h.

5

Figure 3: Confusion matrix of the Naive Bayes classifier.
It did not perform well because it believed everything it
came across was SQL Injectable.

Figure 4: Confusion matrix of the Decision Tree classi-
fier. It performed slightly worse than the Linear SVM
model during training and validation.

(7) and (8)34 The validation accuracy over 8 folds for
Decision Trees was 79%, which dropped to 66% after
testing. Since Linear SVM performed better, we chose
to not continue with Decision Trees, though Random
Forests may be explored in the future.

E(S) =
c

∑
i=1
−pilog2 pi (7)

Gain(S,A) = E(S)− ∑
v∈Values(A)

|Sv|
|S|

E(Sv) (8)

7.4 Deep Neural Net
Many attempts were made at crafting a deep neural
network for classification. However, all models overfit
the data and did not perform well on validation sets.
Multiple different configurations and regularization
techniques were used to improve performance of the
neural network. Once overtraining was detected, dropout
was implemented. Dropout is a regularization technique
that was proposed by Hinton et al. in [3]. It works
by randomly ignoring certain neurons during training,
which keep a neural network from overfitting the data.
This was a promising approach, as it is especially
effective for networks that operate on small amounts of
data, but no improvement was found. We also attempted
to optimize the model with Adam optimization, but saw
little improvement [4]. This led us to believe that the
problem is not appropriate for a deep neural network (its
use is overkill). Or, there was simply not enough data
to give it at the time which would allow it to learn the
necessary patterns to detect SQL Injection-vulnerable
code. However, this does not mean that one cannot be
used down the line once more data is gathered or the
model is implemented in a way that allows for online
learning.

8 The Bot

As of the completion of this thesis, the bot has not been
fully implemented. However, it is expected to be finished
by the end of this Spring semester. We will make use of
the StackOverflow API to periodically pull and analyze

3In (7), pi is the proportion of an instance S belonging to class i. c
is the total number of different possible classes. In our case, c = 2 since
a binary classification is made: a post’s code either SQL Injectable or
not.

4In (8) A is a given attribute and Values(A) is all possible values
for A. Sv is the subset of all training examples S where an attribute has
value v. So, the second half of equation (8) calculates the total loss
of entropy for a given attribute, which tells us more information when
making a decision about an example.

6

Figure 5: Learning curves for the deep neural network during training: the mean training loss and accuracy during each
epoch and the mean validation loss and accuracy at the end of each epoch. Training accuracy and validation accuracy
are ideally supposed to rise closer to 1 during training. Training and validation loss should have decreased during
training. However, validation loss takes a dip (not even into an appropriate range), then begins to increase. Validation
accuracy increases and then plateaus, showing no improvement in learning. This can be caused by a number of factors
including a small validation set, which we have.

posts from StackOverflow with PHP or SQL labels. This
is done via a cron job running on OCCS. From there,
posts will be passed through another machine learning
model in development which will determine if the post
in question is relevant to us or not (likely using a Lin-
ear SVM again). If so, the post will be analyzed by the
Linear SVM classifier described above. Posts with a pos-
itive classification will be added to a queue for comment-
ing. The queue will be emptied by posting a comment on
each post which will warn the user of possible vulnera-
bilities in their code. This comment also will also include
a link to a web page we set up on OCCS that discusses
the project, the bot, and the necessary information for
developers to protect themselves against SQL Injections.

9 Results

Overall, we found StackOverflow to not be SQL Injec-
tion warning savvy. A very small percentage (four out of
all 1117) of answers to vulnerable questions contained
code that answered the poster’s question and fixed their
security flaws. This could be attributed to the relatively
sub par coverage of Injection prevention techniques in
the literature, vulnerabilities that went undetected, or un-
willingless to alert the poster, among other possibilities.

Figure 6: Percentage of analyzed answers which do not
offer a solution for the original post’s vulnerability. Very
few users provided secure solutions to insecure posts.

7

Figure 7: Upset plot showing the total amount of ques-
tions recorded that used real escapes, prepared state-
ments, bounded user input, or were SQL Injectable
(lower left). It also shows the frequency of vari-
ous qualitative coding combinations across all ques-
tions. Clearly, the majority of questions were coded as
injection-vulnerable. Few made use of all three prepared
statements, bounded user input, and real escapes.

Many pages ended up with identical combinations of
qualitative codes. This may be an indication that cod-
ing practices which lead to insecure code are learned
(though, it could just be a pattern that emerged for no
reason). The frequency of each combination of codes for
all posts, questions, and everything else on a given Stack-
Overflow page that we analyzed are expressed in Fig-
ures (7), (8), and (9), respectively, as upset plots, which
were created by Eliana Grossof. The bottom left cor-
ners of these figures show the amount of total times a
post element was coded as SQL Injectable, made use of
bounded user input, included a prepared statement, or
used a real escape. The main plot shows the distribu-
tions of various combinations of these codes across each
page’s subsections. It is clear that the widest range of
code combinations occurs in the questions on StackOver-
flow. Comments and answers most frequently just con-
tain SQL Injectable advice or code. Additionally, behav-
iors that make use of more than one qualitative coding
trait are more frequent than those that demonstrate a sin-
gle behavior. Of course, these are only hypotheses that
were extrapolated from the data and not verified in an
experiment to find causality.

10 Future Work

Future work (including time spent on the project dur-
ing the rest of this semester) consists of finalizing the
setup of the bot to post comments to StackOverflow on
our behalf, honing the messages and resources (or poten-
tially writing our own) to communicate effectively the

Figure 8: Upset plot which follows the same format as in
Figure (7), but for the qualitative codes representing all
answers analyzed from StackOverflow. Again, the ma-
jority of answers are SQL Injectable. However, there is
a large drop off in the amount of answers that fall into
most other combinations of codes.

Figure 9: Upset plot for all instances of “everything
else”, which is all non top-upvoted answers and com-
ments on a given StackOverflow post. As with the an-
swers presented in Figure (8), the majority of everything
else on a post was SQL Injectable and very few instances
provided code that made use of real escapes, bounded
user input, or prepared statements.

8

importance of preventing SQL Injection to StackOver-
flow users, deploying the classifier to effortlessly run on
OCCS, and setting up potential pipelines to periodically
retrain the model on new data and instances from Stack-
Overflow. Further on, work could be done to set up an
effective deep neural network once more data is gath-
ered. We have also briefly discussed reestablishing De-
cision Trees or Random Forests as a viable classifier for
their ability to provide “justification” of why a post was
tagged. As mentioned earlier, various future works could
be done to explore the effectiveness of different vector-
ization techniques to transform the raw code into vectors
for the various models.

11 Acknowledgements

I would like to express my gratitude to Dr. Cynthia Tay-
lor for advising this project. Eliana Grossof was essen-
tial to the early development and success of this research.
I would like to thank Evans Muzulu and Sam Fertig for
their incredible work and great time as collaborators. Ad-
ditionally, help and support from other department mem-
bers, like Dr. Adam Eck, was much appreciated. Ella
Rumsey for reviewing, editing, and supporting me along
the way. Finally, I would like to thank my family for their
support and encouragement.

References

[1] F. Fischer, K. Böttinger, H. Xiao, C. Stransky,
Y. Acar, M. Backes, and S. Fahl. Stack Overflow
Considered Harmful? The Impact of Copy Paste on
Android Application Security. pages 121–136, 2017.

[2] Aurelien Geron. Hands-on machine learning with
Scikit-Learn and TensorFlow : concepts, tools, and
techniques to build intelligent systems. O’Reilly Me-
dia, 2017.

[3] Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Improving neural networks by prevent-
ing co-adaptation of feature detectors. CoRR,
abs/1207.0580, 2012.

[4] Diederik P. Kingma and Jimmy Ba. Adam: A
method for stochastic optimization, 2017.

[5] Tom M. Mitchell. Machine Learning. McGraw-Hill,
New York, 1997.

[6] OWASP. Owasp top ten web application security
risks. 2020.

[7] Cynthia Taylor and Sahell Sakharkar. ’);drop table
textbooks;–: An argument for sql injection coverage
in database textbooks. CIGSCE, 50:191–197, 2019.

9

	Quality of SQL Code Security on StackOverflow and Methods of Prevention
	Repository Citation

	tmp.1641834859.pdf.90haw

