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Pretraining Deep Learning Models for Natural
Language Understanding

Han Shao
Oberlin College
Oberlin, Ohio

hshao@oberlin.edu

Abstract—Since the first bidirectional deep learn-
ing model for natural language understanding, BERT,
emerged in 2018, researchers have started to study and use
pretrained bidirectional autoencoding or autoregressive
models to solve language problems. In this project, I
conducted research to fully understand BERT and XLNet
and applied their pretrained models to two language
tasks: reading comprehension (RACE) and part-of-speech
tagging (The Penn Treebank). After experimenting with
those released models, I implemented my own version of
ELECTRA, a pretrained text encoder as a discriminator
instead of a generator to improve compute-efficiency, with
BERT as its underlying architecture. To reduce the number
of parameters, I replaced BERT with ALBERT in ELEC-
TRA and named the new model, ALE (A Lite ELECTRA).
I compared the performance of BERT, ELECTRA, and
ALE on GLUE benchmark dev set after pretraining them
with the same datasets for the same amount of training
FLOPs.

I. INTRODUCTION

Humans and computer systems communicate in
fundamentally different approaches. Whereas we
tell stories and relay information through a narrative,
computers rely on objective data and commands.
Bridging the gap is the root of natural language
understanding. Traditionally, in the field of com-
putational linguistics, researchers use statistical or
rule-based modeling of natural language. The n-
gram model is the simplest and most commonly
used statistical model. It calculates the conditional
probabilities of the next word for each n-word se-
quence. However, it can only construct the probabil-
ities of the next word for a combination of n words
that it has already seen during the training process.
Meanwhile, n-gram models are lack of ability to
capture long-range dependencies. Therefore, neural
probabilistic language models were introduced by

Bengio [1]. Specifically, each word is associated to
a real-valued vector in Rm called word embedding.
Moreover, the joint probability function of word
sequences is expressed in terms of those word
embeddings. Then, neural networks learn the word
embeddings and the parameters in the probability
function at the same time. By using this approach,
seen words will increase the probability of similar
words (similar words are expected to have similar
word embeddings) to avoid n-gram model’s short-
ages.

For years, the models constructing word em-
beddings are shallow neural networks and there
is no need to use deep networks to create good
embeddings [2]. Although word embeddings meth-
ods have great performance on the word-level, they
lack the understanding of the interior connections
among texts and are mostly task-specific. Hence,
researchers proposed to build large-scale pretrained
general models based on significant amount of text
data to catch the trends of deep learning as the Com-
puter Vision field does. In 2018, three pretrained
models, ELMo [3], ULMFit [4], and GPT [5] were
published by different AI research institutes. After
small amount of training on specific datasets, they
all accelerated the fine-tuning part and improved
the performance. BERT [6] inherits the structure
of GPT, and uses the same simple network as the
underlying architecture, the Transformer [7], which
is based solely on attention mechanisms, sparing
recurrence and convolutions entirely.

In this project, I conducted research to fully un-
derstand the BERT model and applied its pretrained
models (BERT base and BERT large) to two tasks:
reading comprehension task (RACE [8]) and part-
of-speech tagging task (The Penn Treebank [9]).
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The average accuracy over 10 runs is 0.667 for
RACE middle by using BERT base and 0.977 for
the Penn Treebank by using BERT large. While
trying to boost BERT’s performance, I also stud-
ied several improved versions of BERT including
RoBERTa [10] and ALBERT [11]. Moreover, I
noticed a autoregressive pretraining model named
XLNet [12], while reading the related literature for
natural language understanding. XLNet introduced
a different method of language modeling called
Permutation Language Modeling which is trained
to predict one token given preceding context but
conquer the shortness of unidirection by predict-
ing tokens in random order. I applied XLNet base
on RACE middle and XLNet large on the Penn
Treebank and compared XLNet’s performance with
BERT’s.

After experimenting with pretrained models by
downloading checkpoints from BERT and XLNet’s
websites, I started to implement my own version
of ELECTRA [13], based on the descriptions in
its paper. ELECTRA pretrains text encoders as dis-
criminators rather than generators. It improves the
efficiency of training process by learning from all
tokens instead of the masked tokens (used by BERT)
in the context. ELECTRA’s architecture is the same
as BERT’s. To reduce the number of parameters,
I proposed to replace BERT with ALBERT as
ELECTRA’s underlying structure and named the
new model as ALE (A Lite version of ELECTRA).
I compared the performance of BERT, ELECTRA,
and ALE with the same pretraining datasets and the
same amount of training FLOPs.

II. MODELS

In this project, I studied several versions of BERT
and other two models using different language mod-
elings, XLNet and ELECTRA.

A. BERT

BERT [6] stands for Bidirectional Encoder Rep-
resentations from Transformers. Unlike traditional
language models which process language in one
direction, the bidirectional Transformer [7] allows
BERT to process the sentence from both left to
right and opposite, which improves the model’s
understanding of the above and following context
where the word appears. In this work, we denote

the number of layers as L, the hidden size as H, and
the embedding size as E. BERT was pretrained by
its group for two different sizes: BERT base (L=12,
E=H=768) and BERT large (L=24, E=H=1024).

BERT’s input is a concatenation of two segments.
Each segment is consisted of word tokens. A [CLS]
token is added to the beginning of the sequence, and
two [SEP] tokens are used to separate segments. A
general example of BERT’s input would look like
this: [CLS], tA1 , ..., tAm, [SEP], tB1 , ..., tBn , [SEP],
[PAD], ..., [PAD]. [PAD] tokens will be added at
the end when the sequence is shorter than the
max sequence length. Moreover, each token will
be mapped to a unique number according to the
vocabulary file before being fed into the BERT
models.

To achieve the bidirectional feature, the pretrain-
ing tasks of BERT are also different from former
models’. Instead of predicting the next word given
the preceding sequence, BERT utilizes a pretraining
objective called Masked Language Model (MLM).
MLM will mask 15% of word-piece tokens in each
sequence randomly. BERT is trained to predict the
masked tokens rather than reconstruct the entire
input during pretraining.

Another pretraining task of BERT is next sen-
tence prediction (NSP). The input of BERT is
consisted of two segments. 50% of input’s segment
B are the actual following segment of segment A,
and the rest of input’s segment B are not. The
NSP task is designed to allow BERT to learn
the sentences relationships, though it is proved by
RoBERTa group that NSP task is not very necessary.

The pretraining data BERT used is BooksCorpus
(800M words) [14] and English Wikipedia (2500M
words) [15].

B. RoBERTa

RoBERTa [10] stands for a Robustly Optimized
BERT Pretraining Approach. Different from BERT,
RoBERTa 1) uses more pretraining data totaling
over 160GB (10x BERT pretraining data), 2) imple-
ments dynamic masking (to generate masked tokens
every time feeding in the sequence) instead of static
masking, 3) removes NSP loss, 4) is trained with
large batches for longer time.

I studied this model but did not experiment with
it since basically it has the same architecture as
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BERT’s but was trained with more data for longer
time.

C. ALBERT

ALBERT [11] is a lite version of BERT. It
reduces the number of parameters of BERT through
factorized embedding parameterization and cross-
layer parameter sharing.

In BERT, the embedding size E is tied with
hidden layer size H. Therefore, E increases as H
becomes large. The size of embedding table E ×
V (number of vocabularies) requires billions of
parameters. ALBERT proposed a factorization of
the embedding parameters. Instead of projecting the
word token to a vector in size H directly, it first
projects the word token to an embedding with size
E, and then projects the embedding to a vector in
size H. By using this decomposition, it reduces the
space used by embedding table to E × V + E × H
which is far smaller than H × V when V is large
(over 30k).

Another approach of ALBERT to improve pa-
rameter efficiency is to share all parameters across
layers. As a result, ALBERT base only has 0.11x
number of parameters of BERT base.

In this project, I did not fine-tune ALBERT
for downstream tasks, but used it to improve the
parameter-efficiency of ELECTRA.

D. XLNet

fBERT has some limitations compared to an
autoregressive (AR) model. First, BERT has an
independent assumption since all masked tokens
are reconstructed separately. On the contrary, an
AR model uses the product rule without an inde-
pendent assumption. Second, the input of BERT
includes the symbol [MASK] which never appears
in downstream tasks. In comparison, AR does not
rely on input corruption. However, BERT also has
its advantage compared to AR models. BERT can
access to the whole context at the same time rather
than only the seen first n tokens.

XLNet [12] uses Permutation Language Model-
ing (PLM) to take the advantages from both BERT
and AR models and discard their shortages. By
using PLM, XLNet was trained to predict the next
word according to the previous sequence. However,
different from traditional AR models, instead of

predicting the words sequentially, it predicts the
words in a random order.

XLNet also has two different sizes, XLNet base
and XLNet large (sharing the same hyperparam-
eters as BERT’s). They were both pretrained on
a larger dataset collections (160GB) compared to
BERT’s (16GB).

E. ELECTRA

The authors of ELECTRA [13] point out that
MLM requires large amount of computations since
models only learn from 15% of the input data
by predicting the masked tokens. Therefore, they
proposed a more compute-efficient pretraining task
called replaced token detection. Instead of recon-
structing the masked tokens, they used a small MLM
as a generator to produce corrupted input by replac-
ing each masked token with a word sampling from
the probability distribution. Then, the corrupted
input is fed into a discriminator which predicts
whether each token was replaced by the generator or
not. This pretraining task is more compute-efficient
than MLM since the discriminator can learn from
all tokens instead 15% tokens which are masked.

Both generator and discriminator in ELECTRA
are built upon BERT. The generator is smaller than
the discriminator and its size is controlled by a
hyperparameter. This fraction will be multiplied to
hidden size, number of attention heads, and interme-
diate size to enable the generator to be smaller than
the discriminator while having the same number of
layers as the discriminator does. A smaller generator
is important to 1) reduce compute per training
step, 2) not pose a too-challenging task for the
discriminator preventing it from learning effectively.

III. DATASETS

To test the performance of BERT and XLNet on
reading comprehension and part-of-speech (POS)
tagging tasks, I used RACE [8] and the Penn Tree-
bank [9] datasets respectively. GLUE [16] bench-
mark dataset is used to evaluate the performance of
ELECTRA, BERT, and ALE.

A. RACE

Large-scale ReAding Comprehension Dataset
from Examination (RACE) was collected from En-
glish examinations in China, which are designed
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for middle school (RACE middle) and high school
(RACE high) students . It is a large-scale reading
comprehension dataset with more than 28,000 pas-
sages and nearly 100,000 questions [8].

RACE dataset has a higher level of difficulty
compared to other reading comprehension datasets
such as SQuAD1.0 [17] and SQuAD2.0 [18] be-
cause 1) all questions and candidate options are
generated by human experts instead of extracting
a segment from the original articles and generating
wrong options randomly, 2) many questions require
sentence-level reasoning, 3) articles’ topics cover
different domains and writing styles are also variant.

In this project, I trained and tested BERT base
on RACE middle dataset. Table I lists the details of
RACE middle data. Each input example is stored in
a single JSON file and is consisted of one article,
mostly 4 questions, and a list of four candidate
options for each question.

B. The Penn Treebank

The Penn Treebank [9] is a collection of sen-
tences for which complete parse trees have been
derived by expert human linguists. The parse trees
indicate the grammatical structure of the sentences
by marking the subject and predicate, prepositional
phrases, etc. In creating the parse trees, the first step
is to perform part-of-speech tagging (also done by
human experts). Therefore, the dataset contains two
forms of each sentence: one form with each word
tagged with its POS and a second form which is the
parse tree. The form that I used for the POS tagging
task is the former one.

Each instance in the dataset is a sentence where
each word is associated with a tag. The dataset con-
tains 36 POS tags and 12 other tags (for punctuation
and currency symbols). The difficulty of this task
is that the same word in different sentences might

RACE middle Train Dev
# articles 6409 368

# Questions 25421 1436
Passage Len 231.1
Question Len 9.0
Option Len 3.9
Vocab Size 32811

TABLE I
RACE MIDDLE

Corpus |Train| |Dev| Task Metrics
Single-Sentence Tasks

CoLA 8.5k 1k acceptability Mathews corr.
SST-2 67k 0.9k sentiment acc.

Similarity and Paraphrase Tasks
MRPC 3.7k 0.4k paraphrase acc.
STS-B 5.7k 1.5k sentence similarity Pearson corr.
QQP 364k 40k paraphrase acc.

Inference Tasks
MNLI 393k 10k NLI matched acc.
QNLI 105k 5.5k QA/NLI acc.
RTE 2.5k 0.3k NLI acc.

TABLE II
GLUE BENCHMARK TASKS

have different tags. Therefore, it is a task that not
only to find the connections between words and their
tags but also to learn the word-wide relationships.
The training set I used includes 45k sentences and
the testing set includes 1k sentences. The averge
sentence length is 24.4.

POS is believed to be an important part in lan-
guage understanding. The meaning and the role
of a word in a sentence is a small block which
contributes to humans and computer systems’ un-
derstanding of the whole sequence or even the
whole context.

C. GLUE

The General Language Understanding Evaluation
(GLUE) benchmark [16] is a collection of various
natural language understanding tasks.

GLUE benchmark has three types of tasks: single-
sentence tasks, similarity and paraphrase tasks, and
inference tasks. Table II shows the detailed infor-
mation of each task. The descriptions of tasks are
listed in APPENDIX. Following BERT, I did not
test the models on WNLI dev set since the train/dev
split of WNLI is adversarial which results in weird
behavior.

IV. EXPERIMENTS

A. BERT vs. XLNet

1) RACE: To fine-tune BERT on RACE, we
need to convert the JSON files into the format of
BERT’s input. First, I read each JSON file as a
single RaceExample which has properties:

• id: unique id for each example.
• article: the untokenized text of the article.
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• question: the untokenized question.
• options: a list of four untokenized options.
• label: the correct answer (one of A, B, C, D).

Then, each RaceExample is processed to an In-
putFeature which has properties:

• four options: a list of four Option objects.
Each Option object has

1) input ids: a list of token ids.
2) input mask: if is padding (0) or actual to-

kens (1).
3) segment ids: segment A (0) or segment B

(1).
• label id: an integer in [0, 1, 2, 3] for four

options.

A processed input example for BERT models:
[CLS] tokenized article [SEP] tokenized question
[SEP] tokenized option [SEP] [PAD]... [PAD]. The
padding part ([PAD]s) will be added if the sequence
length is smaller than the max sequence length.

After feeding the data into BERT, I extracted the
output of all [CLS] tokens and fed those through a
fully connected layer to compute the probabilities
of four options for each question.

The BERT base model I used has been pre-
trained by BERT group on BooksCorpus and En-
glish Wikipedia for 1M steps through MLM and
NSP tasks. I fine-tuned BERT on RACE middle
dataset with sequence length 384, learning rate 5e-
5, and number of epochs 3. The average accuracy
over 10 runs is 0.667.

While fine-tuning XLNet on RACE, I used the
XLNet group’s implementation of applying XLNet
to RACE. The data processing part is basically the
same as BERT’s except 1) if the question needs to
fill in the blank, the blank is replaced by the options,
2) padding part is moved to the beginning of the
sequence, 3) [PAD], [SEP], and [CLS] tokens have
their own segment ids instead of 0 or 1. To keep
the consistency, I trained and tested XLNet base on
RACE middle dataset with learning rate 2e-5 for 2
epochs and achieved 0.692 average accuracy over
10 runs, 0.025 higher than BERT base’s average
accuracy. It’s difficult to compare the performance
of XLNet and BERT on RACE dataset since XL-
Net was pretrained on 10x larger pretraining data.
However, it shows that increasing the amount of

training data is not an efficient method to improve
downstream tasks’ accuracy.

2) The Penn Treebank: The raw data of POS
tagging task is a file consisted of thousands of
sentences where the words in each sentence are
labeled by POS tags. To fine-tune BERT on the Penn
Treebank dataset, I added two more labels to the
list of tags: ## and PAD. ## is used when a word
is tokenized to multiple word-pieces such as im-
porting ⇒ import ##ing. ## is the label assigned to
##ing. Meanwhile, for the sequences whose length
is smaller than max sequence length, label PAD will
be assigned to [PAD] tokens.

From the training data file, each sentence will be
converted to a PosExample which has properties:

• id: the unique id for each example.
• sent: a list of untokenized words in the sen-

tence.
• label: a list of labels for all words.
Given each PosExample, I created an InputFea-

ture which has properties:
• input ids: [CLS] tokenized sent [PAD] . . .

[PAD].
• input mask: 1 if the corresponding input id

has the original POS label, 0 otherwise (0 for
##token, [PAD] token, and [CLS] token.) It is
used while calculating loss and accuracy.

• segment ids: a list of 0s for one-sentence task.
• label li: a list of labels. The original POS label

for the first element of every tokenized word.
## for ##tokens. PAD for [PAD] and [CLS]
tokens.

Different from RACE where only the output of
[CLS] is used for predictions, all outputs from the
last hidden layer of BERT are used for POS tagging
predictions since it is a word-level problem rather
than a sentence-level problem. Therefore, after feed-
ing the processed data into BERT, the outputs of all

Model Dataset LR Num Epochs acc.
BERT base Race middle 5e-5 3 0.667
XLNet base Race middle 2e-5 2 0.692
XLNet base Treebank 5e-5 3 0.948
BERT large Treebank 5e-5 3 0.9773
XLNet large Treebank 5e-5 3 0.84

TABLE III
BERT VS. XLNET
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Model Train FLOPs Params MRPC CoLA MNLI SST-2 QQP QNLI RTE STS-B Avg.
BERT small 2.3e17 13.5M 0.838 0.317 0.785 0.908 0.877 0.862 0.610 0.862 0.757

ELECTRA small 2.3e17 13.5M 0.824 0.509 0.770 0.877 0.888 0.847 0.592 0.840 0.768
2x time 4.6e17 13.5M 0.831 0.561 0.769 0.869 0.887 0.851 0.592 0.848 0.776

ALE small 2.3e17 4.8M 0.738 0.305 0.745 0.834 0.878 0.824 0.567 0.810 0.713

TABLE IV
COMPARISON OF SMALL MODELS ON THE GLUE DEV SET

tokens are fed through a fully connected layer to
calculate the probabilities of all tags for each word.

To get accurate loss and accuracy, I calculate the
average by using input mask (1 if the token has the
original POS tag, 0 otherwise) as weights. I trained
and tested BERT large model on the Penn Treebank
dataset with max sequence length 128, learning rate
5e-5 for 3 epochs. The average accuracy over 10
runs is 0.9773.

To improve the performance of BERT on POS
tagging task, I also tried to replace the fully con-
nected layer with a Conditional Random Field
(CRF) [19] layer which will update a transition
matrix during the training process. Each cell in the
transition matrix stores the score of label transition
from label X to label Y. After getting the outputs
from BERT, the model will do the tag predic-
tions based on logits and transition matrix while
maximizing both the probability of label and the
transition score from the last label to the current one.
However, after applying this approach, the average
accuracy over 10 runs is 0.9768. Using CRF layer
did not improve the performance significantly. Its
accuracy is even slightly lower than that while using
a fully connected layer. It might be because our
model has reached the ceiling performance on the
Penn Treebank dataset for the POS tagging task.

The data processing of the Penn Treebank dataset
for XLNet is exactly the same as BERT’s, though
some small modifications were made to fit XLNet
input conventions such as the order of tokens and
input mask format. To keep consistency, I trained
and tested XLNet large on Treebank dataset with
learning rate 5e-5 for 3 epochs and achieved average
accuracy 0.84 over 10 runs. Table III shows the
results of both BERT and XLNet. XLNet large’s
accuracy on POS tagging task is much lower than
that of BERT large’s. Therefore, to test whether the
bad results were caused by human errors, I trained

and tested XLNet base with the same experiment
setting and achieved average accuracy 0.948 over
10 runs. My inference of XLNet large’s bad per-
formance on the Penn Treebank dataset is that the
model is large and has been trained on 160GB
pretraining data before. Hence, it might be easy for
it to become overfitting on a small downstream task
dataset. Further investigation is required to verify
this thought.

B. ELECTRA & ALE

ELECTRA and ALE are implemented by myself
through TensorFlow library [20]. First, I prepared
the pretraining datasets, BooksCorpus and English
Wikipedia. BooksCorpus dataset is no longer pub-
licly available, so I created my own BooksCor-
pus dataset by using a crawler to collect data
from smashwords website [21]. English Wikipedia
dataset is constructed by downloading the latest
dump [15], extracting the text, and some cleanup
steps. After reading all input files and concatenat-
ing all lines together, I converted the large corpus
into sentence-per-line format which is required by
BERT. The data processing is similar to what I did
for BERT. Each sequence is tokenized, and [CLS],
[SEP] and [PAD] tokens are added.

The basic architecture of ELECTRA is one gen-
erator and one discriminator. Both of them can be
built upon BERT directly with some extra efforts:

1) Implement Dynamic masking. For each input
sequence, I need to mask 15% tokens randomly
every time the input is fed into the model.

2) Make BERT into a MLM. To build a genera-
tor, several layers need to be added to the end
of BERT to make masked token predictions.

3) Construct input for the discriminator. The
input for discriminator is generated by replac-
ing masked tokens with word tokens sampling
from the probability distribution provided by
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the generator. I used temperature sampling [22]
for this step. The temperature T was set to 0.8.

4) Make BERT into a binary classification
model. To discriminate whether a token was
replaced by the generator, a fully connected
layer is added to the end of BERT.

5) Build loss functions. The loss functions of the
generator and the discriminator was written ac-
cording to the formulas in ELECTRA’s paper.

ELECTRA has three different sizes, ELECTRA
small, ELECTRA base, and ELECTRA large.

Due to the limitation of computing resources, I
only pretrained ELECTRA small and compared its
performance on GLUE dev set with BERT small’s
(trained by myself with the same pretraining data)
after training for the same amount of FLOPs.
To reduce the number of parameters, I came up
with an idea to replace the underlying struc-
ture, BERT, with ALBERT in ELECTRA and
called the new model ALE. The results (max of
10 runs) of ELECTRA small, BERT small, and
ALE small are shown in Table IV. The pretraining
and fine-tuning hyperparameters are recorded in AP-
PENDIX. From Table IV, we can notice that after
training for the same amount of FLOPs on the same
pretraining data, ELECTRA small has better per-
formance on GLUE than BERT small does which
implies learning from all tokens does increase the
compute-efficiency during the pretraining process.
Moreover, I also pretrained ELECTRA small model
for 2x longer time and its average result of GLUE
improves which shows this model hasn’t reached
its ceiling performance and can still learn from the
pretraining data. From table IV, we can also see
that ALE small’s average result of GLUE is 0.713
which is fairly good if we consider the difference
among numbers of parameters of three models.
ALE small has only 0.36x number of parameters
compared to BERT small or ELECTRA small.

V. CONCLUSION

Pretrained deep learning models such as BERT
and XLNet have gained the ability to solve the
complex natural language understanding problems.
By applying them to reading comprehension and
POS tagging tasks, they achieved highest accuracy
0.692 for RACE and highest accuracy 0.977 for the
Penn Treebank.

MLM conquers the weakness of the traditional
AR models and enables BERT to learn from the
context bidirectionally. Though BERT has noises
([MASK] tokens) in its input during pretraining
process which will degrade the performance of
downstream tasks and it is not that compute-efficient
since it learns from only 15% of the tokens, XLNet
and ELECTRA use different approaches to avoid
these shortages. XLNet takes the advantages of both
traditional AR models and BERT by using Per-
mutation Language Modeling. ELECTRA proposed
to train text encoders as discriminators rather than
generators.

According to my implementation of ELECTRA
and comparison between ELECTRA and BERT’s
performance on GLUE dataset, the improvement
of compute-efficiency is verified. Moreover, after
replacing BERT with ALBERT in ELECTRA, I
save 64% space and keep a relatively good result.

From this project, I realized that though large
pretrained models such as BERT and XLNet have
achieved the state-of-the-art results on most NLU
tasks, they both require a large amount of compute
resources such as thousands of GPUs or TPUs
and 160GB data for pretraining. ELECTRA shows
another study direction for researchers that to op-
timize the machine learning process while using
relatively small amount of compute. Pretraining
ELECTRA small with 16GB data requires only one
GPU. By using ALE, it will save 64% parameters
and still get a relatively good result.

In the future, I hope I could have chances to make
developing and applying pretrained models more
accessible to researchers and practitioners with less
requirements to computing resources.
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APPENDIX
A. GLUE

• MRPC: Microsoft Research Paraphrase Cor-
pus [23]. The input is consisted of two sen-
tences. The task is to predict whether two
sentences are semantically equivalent or not.
The number of labels is two.

• CoLA: Corpus of Linguistic Acceptability
[24]. This is an one-sentence task. It requires
models to determine whether a given sentence
is grammatical or not. This is a binary classi-
fication task.

• MNLI: Multi-genre Natural Language Infer-
ence [25]. The input is consisted of a premise
sentence and a hypothesis sentence. The task is
to predict whether the premise entails the hy-
pothesis, contradicts the hypothesis, or neither.
The number of labels is three.

• SST-2: Stanford Sentiment Treebank [26]. This
is also an one-sentence task. It asks models
to predict the sentiment of a given sentence is
positive or negative.

• QQP: Quora Question Pairs [27]. The input
is consisted of two questions. The task is
to determine whether a pair of questions are
semantically equivalent.

• QNLI: : Question Natural Language Inference;
constructed from SQuAD [17]. Given a context
sentence and a question sentence, the task is to
predict whether the context sentence contains
the answer to the question sentence.

• RTE: Recognizing Textual Entailment [28].
The input is consisted of a premise sentence
and a hypothesis sentence. It needs models to
predict whether the premise entails the hypoth-
esis or not.

• STS-B: Semantic Textual Similarity [29].
Given two sentences, the task is to predict how
semantically similar two sentences are on a
range of 1-5. This is a regression problem.

B. ELECTRA & ALE

Hyperparams ALE small ELECTRA small BERT small
Num Params 4.8M 13.5M 13.5M
Max Seq Len 128 128 128
Embedding Size 128 128 128
Train Batch Size 1024 1024 1024
Train Steps 162k 125k 163k
Learning Rate 5e-4 5e-4 5e-4
Num Layers 12 12 12
Hidden Size 256 256 256
FNN Size 1024 1024 1024
Attention Heads 4 4 4
Att. Head Size 64 64 64
Generator Size 0.25 0.25 /
Mask Percent 15 15 15
LR Decay Linear Linear Linear
Warmup Steps 10000 10000 10000
LAMB β1 0.9 0.9 0.9
LAMB β2 0.999 0.999 0.999
LAMB ε 1e-6 1e-6 1e-6
Dropout 0.1 0.1 0.1
Weight Decay 0.01 0.01 0.01

TABLE V
PRETRAINING HYPERPARAMETERS FOR SMALL MODELS

Task Learning Rate Train Batch Size Num Epochs
MRPC 2e-4 64 3
CoLA 7e-5 32 3
MNLI 4e-4 256 3
SST-2 3e-4 256 3
QQP 5e-4 256 3
QNLI 2e-4 256 3
RTE 3e-4 32 10
STS-B 3e-5 8 10

TABLE VI
GLUE HYPERPARAMETERS

Table V and VI illustrate the details of hyper-
parameters of pretraining and GLUE train set for
small models. The number of training steps are
different since I want to train three models for
the same amount of FLOPs. I used LAMB [30]
as optimizer rather than ADAM [31] (ELECTRA’s
original optimizer) since the authors of ELECTRA
mistook its optimizer as LAMB when the paper was
under review.
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