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Machine Learning? In My Election? It’s More Likely Than

You Think: Voting Rules via Neural Networks

Daniel Firebanks-Quevedo
Advisor: Sam Taggart

Abstract

Impossibility theorems in social choice have represented a barrier in the creation of
universal, non-dictatorial and non-manipulable voting rules, highlighting a key trade-
off between between social welfare and strategy-proofness. However, a social planner
may be concerned with only a particular preference distribution and wonder whether
it is possible to better optimize this trade-off. To address this problem, we propose an
end-to-end, machine learning-based framework 1 that creates voting rules according to a
social planner’s constraints, for any type of preference distribution. After experimenting
with rank-based social choice rules, we find that automatically-designed rules are less
susceptible to manipulation than most existing rules, while still attaining high social
welfare.

1 Introduction

In the field of social choice, we are concerned with aggregating individual preferences in
order to make collective decisions. Whether we are looking into choosing policies within a
company or candidates for an election, we want to create a procedure that, given elicited
preferences from a population, either chooses a candidate or derives a collective ordering
from better to worse. As social planners, our main goal is to think about the characteristics
that make a procedure “fair” or “reasonable” and find rules that satisfy them. For instance,
we may want our rule to select an alternative that is preferred by the majority of the
population if there is one, or to choose a candidate that beats all other candidates in head-
to-head comparisons. Some economists thought that reasonable voting rules should make
as many people happy as possible while not allowing unpopular candidates to change the
winner. Satterthwaite in particular, valued a voting rule that would incentivize people to
reveal their true preferences.

Unfortunately, in scenarios with 3 or more alternatives, satisfying some of these criteria
simultaneously is not possible. Gibbard-Satterthwaite’s theorem reminds us that there will
always be scenarios where under any rule, an agent can benefit from lying and effectively
manipulate the outcome of the election ([14], [24]). Similarly, if we want a rule where a
voter cannot be better off without making everyone else worse-off (Pareto efficiency), as
well as not allowing a winner to change in the presence of an irrelevant option (Independence
of Irrelevant Alternatives), Arrow’s impossibility theorem tells us that our social welfare

1Code for tool and experiments: https://github.com/thefirebanks/AutomatedVoting
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function has to be dictatorial [2]. A general theme in impossibility theorems is the existence
of certain forms of social welfare and non-manipulability that are incompatible. In practice,
popular voting mechanisms such as majority rule and Borda count have also been found to
be manipulable. We use these theorems as motivation to design new voting rules.

Manipulability in voting rules does come with assumptions in the setting. For instance,
voters are assumed to have perfect information on everyone’s preferences, and potential
manipulators are assumed have the computational resources to determine whether misre-
porting their preferences can change an election outcome to their favor. We may question
how realistic it is to hold these beliefs in a real-world scenario, but we will continue to
make those assumptions for the purposes of a fair comparison with other social choice rules.
So far, researchers have tried to circumvent impossibility results on non-manipulability by
making further assumptions about preference structures or including randomness in the
rule, yet still aiming for ”universal” voting rules - that is - rules that would work in any
voting scenario. We want to focus on the idea that, rather than aiming for universal voting
rules that are bounded by impossibility theorems, we should create voting mechanisms that
depend on the population’s preferences and satisfy our requested conditions. Another way
of framing it is, we want to learn how a specific population’s preferences allow for welfare
and manipulability constraints to be effectively traded.

1.1 Methodology

We can see the objective of a voting rule as some combination of desired properties for
which it needs to be optimized. If we think of our problem as a learning problem, we are
seeking a model that learns how to identify rankings or winners in a manner that satisfies
a combination of desired properties (e.g., Pareto efficiency and non-manipulability) when
given a population’s set of preferences as input. Specifically, we want to approximate a
function that learns a (non-linear) relationship between preferences and expected winners.
Thus, we will use neural networks’ capacity to be universal function approximators. Not
only does this approach allow the designer to be flexible in the constraints that she desires
to satisfy, but it optimizes this objective based on the data (a population’s preferences) that
is given as input.

1.2 Contributions

Our contributions are:

1. We propose an end-to-end, machine learning-based framework for the automated design
of voting rules that only requires samples from a population’s preferences and can be driven
by a variety of desired properties, both welfare and manipulability-related.

2. We present AVNet, a neural network model that outperforms some existing voting
methods in susceptibility to individual manipulation while maintaining similar levels of
social welfare.

This paper is organized as follows: In Section 2, we discuss past results in social choice,
machine learning in mechanism design, and the work on which our framework is based on.
In Section 3, we introduce the necessary concepts and notation for the rest of the paper, as
well as a formal description of our problem. In Section 4 we describe our proposed solution
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to the problem, in general terms. In Section 5 we dive into the design of the neural network
we will be using to conduct our experiments in Section 6. Finally, Section 7 summarizes
our insights and proposes ideas for future research.

2 Related Work

Social Choice. As mentioned earlier, the Gibbard-Satterthwaite theorem is one of the
impossibility results that has steered a lot of the research in social choice. An important
finding is that non-manipulability (strategy-proofness) implies both IIA and weak Pareto
efficiency [1]. Previous work has also shown that general scoring rules such as Borda count
or Plurality can be manipulated by a coalition of voters [21]. In light of these results, two
main strategies have risen to achieve some notion of strategy-proofness.

The first one involved taking advantage of a population’s preference structure, such as
when every voter has their most preferred alternative in the middle of a single-dimensional
spectrum (single-peaked) [18]. Unfortunately, single-peaked preferences are very unlikely to
appear in the worst-case scenarios used to make mathematical models of voting behavior
[17]. Another route has involved utilizing probabilistic social choice, specifically maximal
lotteries [4], where the outcome is the probability distribution over the alternatives that is
preferred the most. While there exists a tradeoff between efficiency (no agent can be made
better-off without making another agent being worse off) and strategy-proofness [3], Brandl
et al. proved that maximal lotteries can satisfy certain notions of strategy-proofness that
non-probabilistic social choice rules cannot. Yet the main objection to probabilistic social
choice is the fact that randomness would not be well seen in a real-world voting scenario,
as it would not always reflect a population’s preferences.

Machine Learning in Social Choice. Procaccia et al. [22] were the first to describe a
voting rule as a black-box that should satisfy constraints imposed by a designer, through
learning-by-example. In particular, they assumed the designer knows the ”right” winner for
every preference profile that she feeds to the model, and that the black-box rule belongs to
a specific family of voting rules such as score-based or tree-voting. With this information,
they used pairs of (preferences, winner) to model rules from the aforementioned families.
Their results highlight the existence of polynomial algorithms that can approximate any
score-based voting rule and the limitations of approximating tree-voting rules. Our work,
although heavily inspired by [22] differs from it in that we specifically use neural networks
to approximate voting mechanisms that could belong to any family, as well as including
the specific objective of optimizing the trade-off between welfare and strategy-proofness.
Building up from this work, Xia [27] proposed narrowing down the role of machine learning
in the design of social choice rules to either elicit truthful preferences from a population or
reach a consensus under some axioms defined by the designer. We extract the idea of using
such axioms in our objective function when training our neural network.

Automated Mechanism Design (AMD). In 2002, Conitzer and Sandholm [8] intro-
duced the idea of automated mechanism design, an approach that framed the mapping of
preferences to outcomes as an optimization problem (similar to what we described in our
methodology in 1.1). Given a class of mechanisms (or rules) to search over, the designer
would find the mechanism that optimized an objective function using linear programming
[9] and breadth-first search algorithms [7]. The general advantage of AMD was that, since
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the mechanism does not have to be general, it can circumvent impossibility results for
particular settings.

Later on, convex optimization techniques from machine learning were introduced in by
Dütting et al. [13], where a model learns payment rules that minimize an objective for
combinatorial auctions. This idea was expanded to tackle problems of ranging complexity
from the single-facility location problem, one-to-one matchings between hospitals and doc-
tors, and many-to-one matchings between students and schools [20]. In particular, taking
advantage of the nature of single-peaked preferences, they used Support Vector Machines
to search over all possible class of weighted-generalized median rules. The objective func-
tion to minimize in this case is the difference between the generated mechanism and a
strategy-proof social choice mechanism, or a stable two-sided matching.

Deep Learning in AMD. The most recent papers on AMD have seen the usage of
general function-approximator rules from deep learning. In particular, Dütting et al. [12]
leveraged neural networks to design low-regret mechanisms for the multi-item auction design
problem. This work inspired Shen et al. [25] to use deep neural networks for revenue
maximizing multidimensional auctions, revealing novel mechanisms for settings that had
been unsolved for years. Another line of research is reinforcement mechanism design where
agents learn behavior models from existing data and use deep reinforcement learning to
produce a mechanism according to the environment [6]. Shen et al. [26] have managed to
use these models to accomplish comparable results with the second price auction alternatives
used in companies such as Baidu for sponsored-search auctions.

Following the first wave of neural network usage in mechanism design problems, Golowich
et al. [15], proposed an extension to the multi-facility location design problem, in which we
have to decide where to physically allocate a number of facilities given people’s preferences.
Concretely, they made the assumption that the preferences were single-peaked, and then
extended their model to minimize regret. An advantage from using neural networks in these
papers was the freedom to use any type of objective function (i.e constraints) as long as they
can be included in the learning process of the network (i.e the loss function is differentiable).
Our setting (voting) is one that resembles the multi-facility location problem and we draw
ideas from such work to design the framework in this paper, yet we relax the assumption
that preferences have to be single-peaked.

3 Preliminaries

We will now proceed to define our problem formally.

3.1 Environment

In a voting scenario, we have the following:

• A finite set N of n voters.

• A finite set A of m alternatives or candidates.

• For each voter i ∈ N , there is a ballot (or preference ranking) bi = {c1, c2, ..., cm} that
reflects the voter’s preferences as a (descending) ranked ordering of the alternatives.
We interpret x �i y as candidate x is preferred against y by voter i.
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• A preference profile P = {b1, . . . , bn} is the set of all ballots for each voter i ∈ N .

We assume that the preferences of voters come from a particular known distribution D,
and that we can draw a certain number of preference profiles from D. D can be either
an existing synthetic preference/population distribution, or real-world data that contains
a history of past preference profiles from people. The intuition behind this is that several
examples of preferences coming from the same distribution should give the model an idea
of how preference structure affects the outcome of the election.

There are multiple ways of representing preference profiles that can be used to design voting
rules. Two representations will come in handy later.

• A voting situation is a representation of a preference profile P which contains the
number of people that have a particular set of preferences b [23]. If we define P to be
a profile of n = 9 and m = 3, where 4 people have the ranking [a � b � c], 3 people
have [b � c � a] and 2 people have [a � c � b] then we can define Z as the tuple of
Z = {(4, [a � b � c]), (3, [b � c � a]), (2, [a � c � b])}:

Z =


4 3 2

Rank1 a b a
Rank2 b c c
Rank3 c a b


• A voting rank matrix R is an alternative representation of a voting situation, where

element Ri,j is the number of people that assigned rank i to candidate j. An important
note is that this compression process leads to a loss of information that was initially
given to us in the voting situation. For instance, we know that 6 people rank a as
their first choice, but we don’t know how they ranked b against c. If we transform
our voting situation above to a voting rank matrix, we would get:

R =


a b c

Rank1 6 3 0
Rank2 0 4 5
Rank3 3 2 4


3.2 Social Choice Functions

Let P represent the set of all possible profiles for set A given n voters and S(X) denote the
set of all nonempty subsets of a set X. Then:

Definition 3.1. A voting rule is a social choice function SCF : P → S(A) that maps
sets of preference rankings to a particular winner(s).

There are many types of voting rules and they can be classified in different families depend-
ing on their procedure to choose a winner. For instance, in Borda Count, each candidate
gets assigned a score depending on their ranking in a ballot, where a candidate in position
k gets m− k points (i.e m− 1 for the candidate preferred the most, and 0 for the candidate
preferred the least). We add these points for every candidate and for every ballot, which
end up yielding the final score for each candidate across the preference profile - the winner
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being the candidate with the highest final score. This is an example of a scoring rule. On
the other hand, an example of a tree-voting rule is Copeland, where pairwise comparisons
are made between each candidate to choose the winner. We define NetP (x � y) as the
difference between the number of people that prefer candidate x over y and the number of
people that prefer y over x in preference profile P . Copeland’s method essentially chooses
the candidate with the highest Net score. These 2 families are some of the most explored
classes of voting methods in social choice, and Procaccia’s [22] results were tested on each
of these families separately. In contrast, our model is not reduced to learning rules from
solely these families, but it rather explores the space of all possible voting methods.

3.3 Constraints

In addition, the social planner will define a particular set of constraints C, which will both
guide the learning process of our model and the evaluation metrics of the voting rule we
produce. Intuitively, they should reflect the principles that a population holds with respect
to making collective decision. For this to work, we have defined two possible types of
constraints:

3.3.1 Welfare constraints

In a welfare constraint, the selection forces the winner to be a candidate that is good for
a large portion of society. These candidates can generally be determined from the original
preference profile, without using a voting rule. Generally this happens through counting
votes and making comparisons between candidates, and the winner does not change under
any rule.

Some examples of welfare constraints are:

• A Condorcet winner for a profile P is an alternative x that defeats every other alter-
native in the strict pairwise majority sense. A candidate x wins against y in the strict
pairwise majority sense if NetP (x � y) > 0. Note that a Condorcet winner may not
always exist, especially in cases with more than 3 candidates. [5]. Then, Condorcet
complicity enforces a rule to choose the Condorcet winner if there is one.

• A majority winner is a candidate m that is preferred by more than half the population.
Then a majority criteria would enforce the rule to choose the majority winner if
there is one.

• Under plurality rule, the candidate with the most votes wins. Then a plurality
criteria can enforce a rule to choose the plurality rule winner if there is one.

3.3.2 Counterfactual constraints

These measure the strength and consistency of a voting rule in alternative scenarios. A social
choice rule SCF is susceptible to individual manipulation (IM) if given a preference
profile P and an alternative profile P ′ with only voter i’s ballot being altered, SCF (P ′) �i

SCF (P ). In other words, there is an alternative ordering that voter i could report in order
to change the election outcome in their favor. SCF is single voter strategy-proof if it is not
susceptible to individual manipulation.
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3.4 Design Objectives

General Goal: Given a particular distribution D and a set of constraints C, we want to
find a voting rule that satisfies the constraints in C with high probability over preference
profile P ∼ D.

Specific Goal: In this paper, let C = Condorcet complicity, majority criteria, single-voter
strategy-proofness. Given a particular distribution D, we want to find a voting rule for a
preference profile P ∼ D that is better than existing voting rules in efficiently trading off
susceptibility to individual manipulation, Condorcet consistency and the majority criteria.

4 Automated Mechanism Design Framework

4.1 Social Choice Rule Design as a Learning Problem

We will first give some intuition to think of social choice in machine learning terminology,
then describe our formal approach to the problem. In machine learning, a traditional
supervised learning task is to categorize an unlabeled item after learning a mapping from a
data set of pre-labeled items. Concretely, a model learns a function h : X → Y that maps
inputs x ∈ X to labels y ∈ Y . This is called a classification task because the labels are
categorical. When there are more than 2 possible categories, we end up with a multiclass
classification problem.

We can frame the problem of finding a social choice rule f : P → S(A) that maps preference
profiles to a winner as a multiclass classification problem, where we have a set of inputs
X = P and a set of possible labels Y = S(A). The intuition behind the labels in our
problem is that for every preference profile (our input) there exists a winner (a label) that
represents the best candidate according to the constraints we have previously defined. But
where is the learning, specifically? Well, let us assume that we can represent a voting rule
as some parameterized black-box model. Then we want to learn which parameters allow
our model to choose the right winner.

Something to highlight is that we do not want to set only one constraint like strategy-
proofness for our model, as the rule could learn to always pick the same candidate without
taking in account the preferences of people. Conversely, a rule that only values social welfare
runs into the same impossibility bariers as existing voting mechanisms.

4.2 Proposed Approach

1. Input: Either draw a set Ω of preference profiles from distribution D, or read in a
set of past preference profiles for a real-world population (e.g past ranked ballots from
the last 10 years of elections in the UK).

2. Learning: The goal of the neural network is to find a parameterized social choice
rule that minimizes a loss function designed by the social planner, composed of the
constraints that they defined. The network will take preferences as input and output a
score vector for each candidate, for us to choose the one with the highest score. We will
optimize the parameters of the model using stochastic gradient descent, a standard
method that . Since the constraint satisfaction rate function is not differentiable by
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itself because it is a step function, in the next section we will explain how to use the
cross-entropy function to mitigate this issue.

3. Evaluation: For a large number of candidates and voters, it would be intractable to
compute whether an SCF is single voter strategy-proof. We instead measure strategy-
proofness by sampling alternative profiles and calculating the consistency of a partic-
ular SFC.

• Formally, the individual manipulation rate of a social choice function SCF is the
ratio of alternative profiles for which SCF was not manipulable to the number
of alternative profiles tested. Let w be the winner of a particular rule SCF for
a preference profile P . Now, define a set P ′ of alternative preference profiles
{P ′0, P ′1, ..., P ′k} that contain a ballot b′ where some candidate c1 gets randomly
swapped with candidate c2 from rank r1 to rank r2. Then, we sample alternative
preference profiles from P and check whether the winner remains to be w or not.
If it is some other w′ 6= w ∈ A, then we can say that the rule is manipulable
for that particular preference profile. The individual manipulation rate ends
up being the number of alternative profiles for which a rule is susceptible to
individual manipulation divided by the number of alternative profiles tested. It
is important to note that we are not aiming for a rule to be entirely single voter
strategy-proof, but rather that we will look for improving upon the IM rate of
existing voting rules.

• We extend the idea of IM rate to any constraint Ci. In particular, we define the
constraint satisfaction rate as the number of times a social choice function
satisfied a particular constraint divided by the number of profiles it was evaluated
in. For instance, if a voting rule picked the Condorcet winner for 2 out of 3
scenarios, the Condorcet satisfaction rate would be 0.66. We will evaluate voting
rules in two ways: the loss function of the network, and the constraint satisfaction
rate.

5 AVNet

We use neural networks to take advantage of their flexibility in approximating non-linear
functions, with the idea that we can find a rule from any parameterized family of voting
methods, and tweak such parameters to optimize over our loss function that represents
how well the resulting voting rule satisfies our constraints. As universal approximators,
neural networks learn relationships between their input and the output, and we can use
this property to specialize voting rules according to particular distributions, which could
perform better than other generalized rules.

5.1 Network Design

Recall that P is the set of all preference profiles that we will give as input to the network
after applying transformation T (P ) to all P ∈ P. We need to format our input as a feature
vector for the network to read. For example, we can construct a voting rank matrix R from
a particular preference profile P , and flatten it to get a single column vector. In this case,
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the data transformation is simple - flatten a matrix - and can be encoded in a function
T (P ) = Flatten(P ).

We need a hypothesis function f : P → S(A) that will serve as the function template
for the voting rule. In neural networks, the hypothesis function is composed from the
activation functions that we are using in the layers. These are the transformations that
will be applied at every layer of the network as the input moves forward. As opposed to
the network architectures in the auction [12] and multi-facility location problems [15], the
activation function and structure of the layers is not inherently related to our social choice
problem. Instead, we try starting from the simplest architecture possible with the most
used and recommended settings and build it up from there until we achieve good results.

Figure 1: Proposed Architecture #5

We will use 2 hidden layers that could have either the ReLU or the LeakyReLU activation
functions, followed by a final layer with a softmax activation. The softmax layer allows us
to output ”scores” to every candidate from 0 − 1, which we purely do for differentiability
purposes. To avoid overfitting, we added a dropout layer after each hidden layer.

ReLU : g(w, x, b) = max(0, wx+ b) (Most recommended activation function)

Leaky ReLU : h(z, α) = max(αz, z) (To avoid the dying ReLU problem)

Softmax : s(yi) =
eyi∑
j e

yj
(For calculating the candidate scores)

We have attempted 14 different simple network architectures for this problem, and we will
show the ones that were the most successful. These are the forms of the 4 most successful
(#1, #5, #9 and #10) architectures (shown in the Experimental Results section).
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• Architecture form #1: Input, ReLU, ReLU, softmax

• Architecture form #2: Input, LeakyReLU, LeakyReLU, softmax

The number of neurons in the input layer corresponds to the number of features (the size of
the flattened voting rank matrix), r = m· (# of features) for the first hidden layer, t = m ·n
for the second hidden layer, and m for the final layer. Note that while we are using the
number of voters to define the number of neurons in one of the hidden layers, this is not
necessary (nor recommendable) for cases where the ratio of voters to candidates is very
large, as it can cause bottlenecks in the learning process. Instead, we can use r number of
neurons for both hidden layers, shown in architecture #5 shown in figure 1.

5.2 Loss Function

The loss function for our neural network will be composed of two components, corresponding
to the two types of constraints that we have defined above. We will use cross-entropy, a
common loss function used in supervised learning to mitigate the non-differentiability of the
constraint-satisfaction rate. Given a target distribution P and an approximation of such
target distribution Q, cross-entropy measures the average number of bits that it takes to
represent an event from Q instead of P [19]. Translated to our problem, we want to measure
how likely our voting rule is to output the right winner.

Welfare loss
Let c∗ be the candidate that would be chosen according to a constraint Ci, and let ci be the
candidate chosen by our network. Then let p∗(ci) be the probability that candidate ci = c∗

and p(ci) be the probability that candidate ci will be chosen as the winner by our network.
Then the welfare loss Lo would be:

Lw(P ) = λw

−∑
ci∈A

p∗(ci) · log(p(ci))


Where λw is a multiplier that denotes how important this constraint is to our rule.

Counterfactual loss
Let P = {P} ∪ P ′ be the set of all preference profiles, where P is the original preference
profile we give as input to the network, and P ′ = P\{P} be the set of alternative preference
profiles with length delimited by the user. If p′(ci) is the probability that our network will
choose candidate ci as the winner given alternative profile P ′, then the Counterfactual loss
Ls would be:

Ls(P) = λs
1

|P ′|
∑

P ′∈P ′

−∑
ci∈A

p(ci) · log(p′(ci))
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Total loss

L(P) =
∑
Ci∈C

LCi(P ) = Lw(P ) + Ls(P )

L(P) = λw

−∑
ci∈A

p∗(ci) · log(p(ci))

 + λs
1

|P ′|
∑

P ′∈P ′

−∑
ci∈A

p(ci) · log(p′(ci))


If we were to define any other constraint, we can add it up to L as long as it is differentiable.
In addition, we can adjust the parameters λi according to the level of importance that we
want to assign to our constraints relative to each other. For example, if Condorcet complicity
is twice as important as non-manipulability, we would reflect it in λCondorcet and λIM .

6 Experimental Results

6.1 Design

The goal of this experiment is to compare the performance of AVNet with other voting
rules in different distributions. We made use of the SVVAMP [10] and WHALRUS [11]
Python packages, which offer ways of generating preferences according to a wide array
of distributions, and implementations of existing voting rules that serve as baselines to
compare. For our set of experiments, we took all the available general rank-based rules
as baselines. Before running our experiments, we first generated preference profiles from
all the available distributions in the SVVAMP package and used them to calculate the
baselines’ IM rate. Then, we chose the 3 distributions with the highest IM rate and trained
the AVNet on each of the distributions, comparing its performance to the baselines on
individual distributions on average.

It is worth stressing that even though we tested the effectiveness of this method in different
synthetic distributions, the same procedure could be applied to real-world distributions of
preferences (i.e a history of past preferences of voters). Since we decided to test for instances
of individual manipulation, we realized that there should not be a large difference between
the number of candidates and the number of voters, as the larger the voter-to-candidate
ratio, the harder it is for individual voters to make an impact in the election outcome by
changing their ballots.

6.2 Setup

We generated 100 preference profiles, 80 for training and 20 for testing. These came from
the Cubic, Spheroid and Ladder distributions, as they had the highest IM rate with 0.3,
0.34 and 0.35 respectively. We experimented with preference profiles with 3 candidates and
20 voters, 5 candidates and 40 voters, and 5 candidates and 80 voters. For the learning
process, we use the Adam [16] optimizer, the most recommended optimization algorithm
because it performs better than stochastic gradient descent, and reaches convergence faster.
We set the learning rate to 0.01, and ran the training of the network for 200 epochs. For
the loss function, we included 3 constraints: Condorcet complicity, majority criteria, and
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resistance to individual manipulation, all valued the same (λCi = 1). We will observe both
the IM rate and loss function form of the IM rate (the IM score) in the baselines and AVNet,
while looking at the Condorcet and majority satisfaction rates to analyze the nature of the
trade-off.

6.3 Results

6.3.1 Summary

During training, the network was able to balance welfare and manipulation constraints,
many times achieving high scores in the Condorcet and Majority satisfaction rates, as well
as achieving high IM rates. At the same time, when picking a Condorcet or majority
candidate was not possible, the network focused on maximizing the IM rate. The existence
of a majority/Condorcet winner in the training set heavily affected the performance of the
network in the testing set. In the cubic distribution setting with 3 candidates and 20 voters,
more than 50% of the profiles contained a Condorcet winner and 20% contained a majority
winner. This was not the case for the setting with 5 candidates and 40-80 voters, where
there was hardly a majority winner (if at all) and less than half of the profiles contained a
Condorcet winner.

The rules produced by AVNet outperformed most of the baselines in almost all the distri-
butions, finishing either first, second or third in terms of welfare and manipulation scores.
However, it must be noted that the difference in performance was not large. For instance, in
the setting with 3 candidates the outputs from our AVNet rules were able to be consistent
in 1-4 more alternative profiles than the outputs from the baseline rules. In the settings
with 5 candidates, that number ranged between 10-30 alternative profiles. As expected,
AVNet achieved its highest performance during training, above any of the baselines, indi-
cating that it was either able to learn how to navigate the trade-off between welfare and
non-manipulability, or memorize the settings and their expected output. It could be con-
cluded that had the network been exposed to more data, the gap in performance between
training and testing would have been smaller. Finally, two general patterns that we will see
are that different voting rules from the baseline list perform well in different distributions,
and that even though AVNet had the lowest IM score in comparison to the baselines, it did
not always outperform all of them in the IM rate.

While the architectures that performed best in each setting are different, we denote AVNet*
to represent a rule created by our neural network independent of architecture. In addition,
all the tables presented below belong to the results of the methods in the testing set.

6.3.2 3 candidates

As we can see in tables (a) and (b), the Borda rule had a very high score in comparison
to other voting rules in both the cubic and ladder distributions, but in (a) the AVNet rule
ended up achieving better IM rates. In the spheroid setting from table (c), we can see that
even though the AVNet rule has the lowest IM loss, the Bucklin rule ends up having a
higher IM rate. For all 3 distributions, AVNet was able to attain high welfare scores, often
differing from the other baselines in 1-2 preference profiles. In particular, when AVNet
comes in second in (b) and (c) in terms of IM rate, it achieves better welfare scores than the
next best rule in (b) and Bucklin in (c). Overall, these settings show that, despite the small
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amount of data, enough samples of Condorcet and majority winners in the input taught the
network to recognize such winners and balance them with attaining non-manipulability.

Voting Rule Condorcet rate Majority rate Plurality rate Mean IM rate Mean IM score

RuleBorda 1.0 1.0 0.5 0.91 1.41

RuleMaximin 1.0 1.0 0.45 0.872 2.082

RuleCopeland 1.0 1.0 0.45 0.91 1.41

RuleCondorcet 1.0 1.0 0.5 0.808 3.089

RulePlurality 0.875 1.0 0.45 0.91 3.022

RuleSchulze 1.0 1.0 0.45 0.885 1.881

RuleBucklinInstant 1.0 1.0 0.45 0.885 1.881

RuleVeto 1.0 1.0 0.45 0.885 1.813

AVNet* 0.9375 1.0 0.556 0.936 0.592

(a) Cubic, 3 candidates, 20 voters, architecture #5

Voting Rule Condorcet rate Majority rate Plurality rate Mean IM rate Mean IM score

RuleBorda 1.0 1.0 0.65 0.848 2.418

RuleMaximin 1.0 1.0 0.65 0.709 4.701

RuleCopeland 1.0 1.0 0.55 0.759 3.895

RuleCondorcet 1.0 1.0 0.55 0.696 4.903

RulePlurality 0.929 0.75 0.6 0.808 4.768

RuleSchulze 1.0 1.0 0.65 0.759 3.828

RuleBucklinInstant 0.714 0.75 0.5 0.812 7.052

RuleVeto 0.786 0.75 0.55 0.75 7.253

AVNet* 0.928 1.0 0.625 0.823 0.535

(b) Ladder, 3 candidates, 20 voters, architecture #9

Voting Rule Condorcet rate Majority rate Plurality rate Mean IM rate Mean IM score

RuleBorda 1.0 0.75 0.5 0.848 4.097

RuleMaximin 1.0 0.75 0.5 0.873 3.627

RuleCopeland 1.0 0.875 0.55 0.823 3.694

RuleCondorcet 1.0 0.75 0.45 0.835 4.298

RulePlurality 0.786 0.625 0.6 0.812 7.858

RuleSchulze 1.0 0.625 0.5 0.861 4.701

RuleBucklinInstant 0.929 0.625 0.4 0.937 4.231

RuleVeto 0.929 0.625 0.4 0.911 4.634

AVNet* 1.0 0.875 0.417 0.911 0.270

(c) Spheroid, 3 candidates, 20 voters, architecture #1

6.3.3 5 candidates

Notice that in these settings, AVNet achieves the highest IM performance in all scenarios,
with a difference in IM rate larger than the one found in the 3-candidate settings, yet there
were no majority candidates in the preference structure. We could interpret this as the
network becoming good at being less manipulable than the other rules, yet not having a
good sense of welfare because of the lack of examples. In most scenarios, the network picked
the plurality winner about 20% of the times, and the Condorcet winner 40% of the times (on
average). These results yield questions on how to improve the performance on the welfare
constraints, and a possible solution would be to have a larger training set, or increase the
welfare lambda parameter in the loss function.
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Voting Rule Condorcet rate Plurality rate Mean IM rate Mean IM score

RuleBorda 0.889 0.2 0.895 2.491

RuleMaximin 1.0 0.4 0.882 1.923

RuleCopeland 1.0 0.3 0.794 3.339

RuleCondorcet 1.0 0.15 0.496 8.194

RulePlurality 0.667 0.25 0.874 4.475

RuleSchulze 1.0 0.4 0.861 2.259

RuleBucklinInstant 1.0 0.35 0.941 0.946

RuleVeto 0.333 0.25 0.738 9.085

AVNet* 0.333 0.45 0.992 0.172

(a) Cubic, 5 candidates, 40 voters, architecture #5

Voting Rule Condorcet rate Plurality rate Mean IM rate Mean IM score

RuleBorda 0.818 0.25 0.924 2.894

RuleMaximin 1.0 0.25 0.895 1.71

RuleCopeland 1.0 0.3 0.895 1.685

RuleCondorcet 1.0 0.25 0.634 5.892

RulePlurality 0.727 0.3 0.898 4.066

RuleSchulze 1.0 0.2 0.869 2.106

RuleBucklinInstant 0.818 0.25 0.882 3.535

RuleVeto 0.364 0.3 0.852 8.022

AVNet* 0.454 0.2 1.0 0.186

(b) Ladder, 5 candidates, 80 voters, architecture #10

Voting Rule Condorcet rate Plurality rate Mean IM rate Mean IM score

RuleBorda 0.7 0.35 0.903 3.968

RuleMaximin 1.0 0.35 0.898 1.642

RuleCopeland 1.0 0.35 0.852 2.406

RuleCondorcet 1.0 0.2 0.578 6.801

RulePlurality 0.3 0.35 0.911 7.076

RuleSchulze 1.0 0.35 0.89 1.813

RuleBucklinInstant 0.7 0.3 0.886 4.231

RuleVeto 0.3 0.25 0.94 6.594

AVNet* 0.4 0.2 0.962 0.216

(c) Spheroid, 5 candidates, 80 voters, architecture #1

7 Conclusion and Future Directions

In this paper we have presented a framework that produces voting rules given a preference
distribution and a set of constraints. With enough data, our neural network can learn to
effectively trade-off between welfare and non-manipulability constraints. The flexibility of
our model incentivizes the exploration of unseen voting mechanisms and their exploitation
in specific settings. The applications for this model range from multi-agent artificial in-
telligence systems to real elections, where we can now take advantage of the large space
of possible rules and decide which one works better for our use case. In particular, our
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framework seems to perform well when we know the distribution of the preferences because
we can sample as much data as necessary to improve the learning of the model. Neverthe-
less, AVNet could also be used in scenarios with little data as long as there is not a large
voters-to-candidates ratio. Although a natural objection would be that neural networks are
black-boxes and that they would not be the most democratic method to use, we can argue
that the principles under which the black-box was trained were the ones that were supposed
to be the most valued by a designer (and hopefully, society).

Even though we were not able to outperform all of the voting rules in our baseline list, we
have seen that different rules perform better in different scenarios. Ultimately, this con-
tributes to the idea that preference distributions should considered when deciding which
rule to use. Our results highlight the importance of evaluating the practicality of impossi-
bility theorems and not be limited by worst-case results. Once we relax the constraint of a
social planner looking for a universal voting rule, we get to dive into the nuances of what
they value and how to deal with variation in preferences from different distributions.

While this was a simple proof of concept, it shed light on many possible future avenues. On
the social choice side, we could try to design and compare the network with other classes of
voting rules, like the ones that include rounds (e.g Instant Runoff-Voting) or other types of
ballots. At the same time, we can experiment with more constraints like Pareto efficiency
or IIA, as well as generating more alternative preference profiles to measure different types
of manipulation in voting, like coalition manipulation or bribe models. On the machine
learning side, we can always add complexity to the neural network, try different values of
lambda in the loss function, or simply generate more data to learn from. A key addition to
the AMD Framework for this setting could be cross-validation and hyper-parameter tun-
ing for model selection, which automates the process of testing possible architectures for
AVNet, and more efficiently searches the space of possible hyper-parameters.
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