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ABSTRACT 

The fields of Paleontology and Paleoecology would not be complete 

without taphonomy, the study of the processes affecting organisms between 

death and fossilization. Taphonomy is important because it allows us to make 

more complete conjectures about prehistoric organisms and environments, and 

makes us aware of possible holes and biases in the fossil record due to highly 

destructive processes or the loss of delicate, non-resistant organisms. Studies on 

the processes affecting modern organisms have contributed greatly to the 

understanding of ancient processes; however, most of these studies are near

shore and short-term. What is lacking is information on the effects of these 

factors over long periods of time, and to depths below 50 meters. To gain more 

information about long-term effects, the Shelf and Slope Experimental 

Taphonomy Initiative (SSETI) has deployed sets of crabs, molluscs, urchins, and 

wood on a variety of substrates at depths from 15 to 300 meters in the Bahamas. 

Sample groups have been collected every few years for the last six years, and are 

compared to control sets. 

My research focuses specifically on the crabs, species Callinectes sapidus, 

from experimental sites in the Bahamas. The crab remains display a wide range 

of breakage, dissolution and disarticulation, varying by depth. To determine the 
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effects of depth and environment on the crab remains, changes in size, mass, and 

surface condition of each of the specimens was documented and the results were 

anal yzed for trends across a depth gradient. Scanning electron microscope 

analysis of carapace surface conditions was conducted to determine the degree 

of dissolution of each specimen. 

The crabs were reduced to disarticulated chelipeds, mandibles, and 

carapace fragments within one year in most environments, and the outer 

surfaces of the remains show near-complete loss of pigmentation, and 

microscopic pitting. Although the sample sizes in this experiment are fairly 

small, a trend of better preservation in the middle depths and worse 

preservation at shallow and deep sites was found. Since this taphonomic trend 

exists, the information gleaned from this study may prove to be useful in 

accurately identifying the depth ranges in which fossil assemblages were 

created. 

INTRODUCTION 

The goal of this project is twofold: to describe the degeneration patterns of 

a set of crabs along two transects in the Bahamas, and to find plausible 

explanations for those patterns. To accomplish this, I have analyzed the crab 

remains for taphonomic degeneration in several different ways, and have 

researched previous experiments of this type, work on crabs in the fossil record, 

crustacean biology, and relevant marine chemistry data. 
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PREVIOUS STUDIES IN EXPERIMENTAL TAPHONOMY 

Taphonomy has its beginnings as a simple descriptive science, which 

served to catalogue the ways in which an organism gradually becomes a fossil. 

In the 1960's, taphonomy developed into a more predictive science (Robison and 

Teichert, 1979), and the focus of taphonomic studies moved from the fossils 

themselves to the processes behind their fossilization. Starting in the mid-1980's, 

a number of studies in experimental taphonomy were conducted both in the lab 

and in marine settings to investigate the decay of a number of arthropod groups 

under various conditions of burial, depth, time of exposure, and temperature 

(Schafer, 1972; Plotnick, 1986 & 1988; Briggs and Kear, 1994). 

It is generally accepted that rapid burial and anoxia are the two main 

environmental factors that lead to good preservation, protecting fragile 

organisms from predation, physical weathering, and chemical breakdown 

(Martin, 1999). The body of study on modern taphonomy, though small, has 

served to support and supplement our understanding of the basic avenues to 

exceptional preservation of organisms. 

Plotnick (1986) studied the decay of the shrimp Pandalus danae, both in the 

lab and in the field, and found scavenging, burrowing by infauna, and bacterial 

decomposition to be major factors in the breakdown of the shrimp remains. In a 

later study conducted with Baumiller and Wetmore (1988), Plotnick enclosed 

specimens of the crab Panopeus in wire mesh cages to restrict predation. The 
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specimens were then buried in a carbonate environment for periods of up to 10 

months; they found that the crabs remained fairly well-preserved, and attributed 

this to an environment with fewer infaual burrowers and a carbonate sediment 

which buffers acids and thus slows dissolution. Allison (1988) and Briggs and 

Kear (1994) conducted all of their studies in the lab, placing shrimp remains in 

jars with varying degrees of oxygenation; they both found that anoxic conditions 

did not significantly reduce the decomposition of the arthropods. 

Schafer (1972) describes a field study on the decomposition of crab 

remains in the North Sea immediately after death as follows: first, the carapace 

and the thorax separate, remaining connected only by the skin that covers the 

inside of the carapace. The abdomen begins to separate from the thorax as well, 

and the three body segments finally detach from each other, although each 

segment remains internally intact for a long time, and these intact segments are 

often found along beaches and on the sea floor. When the segments finally 

break apart, the heavier parts, claws and mandibles, separate out first. Schafer 

further notes that the shell itself becomes weaker and more brittle after about 

four weeks; he attributes this not to decalcification, which simply makes the 

skeleton more elastic, but to disintegration of the connective tissue between the 

layers of the cuticle. However, actual breakage of the shell will not occur 

without a physical disturbance of some sort. 

THE BIG PICTURE: The Shelf and Slope Experimental Taphonomy Initiative 

4 



In 1993, the Shelf and Slope Experimental Taphonomy Initiative (SSETI) 

was formed in order to investigate taphonomic processes in a variety of unique 

environments of deposition, and over long periods of time (Parsons-Hubbard et. 

al., 1997 and 1999). The SSETI employed a common technique of modern 

experimental taphonomy - the deployment of dead organisms on the sea floor, 

and then subsequent retrieval and analysis of decomposition after a specified 

period of time. While most modern taphonomic experiments encompass a time 

frame on the order of days to months, the SSETI samples were deployed for a 

minimum of one year. There are other significant distinctions to be made 

, between previous studies and the SSETI experiment. Besides the difference in 

running time, the SSETI experiment covers a wide range of depths - from 15 to 

almost 700 meters deep, covering shelf, slope, and bathyal environments. The 

SSETI study was set up in the field, and specimens were placed directly on the 

sea floor in mesh bags, as opposed to the buried specimens in the Plotnick 

experiments; burial in the SSETI experiment takes place only as a result of 

natural sedimentation at the site. 

The experiment was conducted at three separate sites: two in the 

Caribbean, on a carbonate platform, and one in the Gulf of Mexico, a terrigenous 

outer-shelf/slope environment. Sites covered a wide range of depths and 

substrates, encompassing hardground, sand channels, mud, a near-vertical wall, 

talus slopes, and dunes (Parsons-Hubbard et. al., 1999). In addition to regular 
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shelf, slope, and basin sites, some samples were deployed at more unusual sites 

such as brine seeps, petroleum seeps, and hardground environments (Parsons, 

et. al., 1997). Samples of freshly killed crabs and sea urchins, mollusc shells, and 

wood were enclosed in mesh bags (1 x 1.5-cm holes) that were tied to 1.2-m. long 

PVC poles. The urchins and crabs were both enclosed in smaller, finer (3 mm) 

mesh bags before being placed inside the larger bags. The poles were deployed 

by submersible in groups of four replicates, at depths ranging from 15 to 260 

meters (50 to 875 feet) in the Bahamas and 75 to 267 meters (246 to 876 feet) in 

the Gulf of Mexico (see Figures 1-2). In addition to the poles, tethered shells and 

free shells were scattered at each site. 
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Figure 1: Location map of the Bahamas experiment sites (from Parsons-Hubbard, et. al., 1999). 
Location map of the Gulf of Mexico sites is omitted, as it is not dealt with in this study. 
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Specimens were retrieved in 1994, 1995, 1996, and 1999; another round of 

collection will be done in the summer of 2001. In addition to the retrieval of 

deployed specimens, temperature and salinity data were taken by the 

submersible at 5-10 meter depth increments, and extensive video footage was 

taken at every site. I C. F REELY-SCATIERED 

I S HELLS 

I B. TETHERED SHELLS n ~ A B 

<> 
~~GlL . AGGED EXPERIMENTS~ 
~ ~ 

~ 
1 meter 

Figure 2: SSETI experimental set-up (from Parsons et. al., 1997) 

My project focuses on the gross taphonomy (disarticulation and breakage) 

of the crab specimens (species Callinectes sapidus) from the two Bahamas 

transects, deployed in 1993 and 1994 and retrieved in 1994, 1995, 1996, and 1999. 

In addition, a preliminary study of the molecular-taphonomic processes that 

affect the crab cuticle using scanning electron microscopy will be presented. 

Deployment sites 

The crabs were deployed along two lines perpendicular to shore off of 

Lee Stocking Island in the Bahamas. The two lines, referred to as the AA 

transect and the BA transect, are approximately 2000 meters apart, and are 

parallel to each other (see Figure 1). The sites cover a wide range of 

environments and substrates, which are covered in Table 1. 
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TABLE 1-- Descriptions of experiment sites along the platform and steep slope into Exuma Sound 
off Lee Stocking Island, Bahamas. CSS= carbonate silt and sand, CCS=coarse carbonate sand, 
MCS=medium carbonate sand, FS=fine sand, HG=hardground. Modified, from Parsons-Hubbard, et. a1., 1999, 

Site name Location Site description Bottom type Depth (m) 

PLATFORM TOP 
AA50RID patch reefs Low-relief hardground with a diverse Atlantic 

shallow reef community. 
BA50NO sand channel Open sand bottom with migrating ripples. Macro-

fauna include a diverse gorgonian assemblage. 
BA50MUD mud hill A low-relief sand hill stabilized by gorgonians. 
AAIOONO sand channel Sandy area between patch reefs. Bottom fauna 
AA100S0 dominated by Halimeda and gorgonian assemblage. 
BAIOONO sand channel Rippled sand between patch reefs. Halimeda is 

common. 
BAIOOSO sand channel Replicate of BAIOONO. 
NEAR-VERTICAL WALL 
AA240WA wall Narrow ledge on a near-vertical wall. Plate corals, 

HG 

CCS 

CCS 
MCS 

MCS 

HG 
sponges, gorgonians, and a diverse encrusting community. 

AA290WA wall Narrow ledge on the wall. Associated fauna include HG 
plate corals, sponges, and diverse encrusters. 

BA230WA wall Narrow ledge on the wall. Common associated HG 
fauna include plate corals, sponges, gorgonians, and 
encrusting algae. 

BA230WN wall Replicate of BA230W A. 
TALUS SLOPE 
AA700CR talus Carbonate rock promontories on sloping bottom. FS 

Fauna includes stalked crinoids, arrow crabs, and 
sea whips. 

BA600CL talus Shingled rock and boulder strewn slope with stalked FS 
crinoids, crabs, and sea whips. 

BA640CL talus Replicate of BA600CL. 
BA740BO talus Talus strewn slope with carbonate promontories on a FS 

fine sandy bottom. Stalked crinoids are present. 
BA705BO talus Replicate of BA740BO. 
DUNES 
AA850CR dune crest Crest of relict dune aligned parallel to dip of slope. FS 

The area has sparse crabs, sea whips, many tracks & trails. 
BA830CU crest Crest of relict dune aligned parallel to dip of slope. FS 

The sparse macrofauna includes crabs, holothuroids, 
and sea whips. Tracks and trails are common. 

BA860DP crest Deeper on the same dune crest as BA830CU. FS 
AA875TR trough Trough of relict dune aligned parallel to dip of slope. FS 

The area has sparse crabs, sea whips. Bottom has patches 
of consolidated sand. 

BA850TN trough Trough of dune with sparse macrofauna including FS 
crabs, holothuroids, and sea whips. Tracks and trails 
common. 

BA860TR trough Replicate of BA850TN. Bottom sediments are some- FS 
what consolidated. 

15 

15 

15 
33 

33 

73 

88 

70 

70 

213 

183 

195 
226 

222 

264 

253 

262 
267 

259 

262 

8 



CALLflVECTESSAPIDUS 

The crab Callinectes sapidus belongs to the phylum Arthropoda, 

subphylum Crustacea, class Malacostraca, order Decapoda, infraorder 

Brachyura, family Portunidae, and was first described by Dr. Mary Rathbun in 

1896. In Latin, the name callinectes sapidus means "savory beautiful swimmer," 

but the common name, Atlantic blue crab, suggests Callinectes' primary habitat 

and distinctive coloring. The blue crab is an important -part of the 

estuarine/nearshore environment; it is one of the most abundant large 

invertebrates, and is a major link in the food chain, significant both as predator 

and as prey. It is a mainstay of the fishing industry on the Atlantic and Gulf 

coasts and is of tremendous economic importance to states like Delaware and 

Maryland, the latter of which went so far as to designate Callinectes sapidus the 

state crustacean in 1989. 

Figure 3: Callinectes sapidus, from Steve Zinski, Richmond University 

Blue crabs prefer grassy estuarine or near-shore environments, and 

tolerate low salinities; they are often found in brackish estuarine waters. Their 
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primary range is along the eastern coast of the Americas, although they have 

been introduced to France, Holland, Denmark, and Israel, probably through 

transport in ships' ballast water. Callinectes can be found up to about 37 meters 

deep;1 this is clearly not as deep as our studies go, and a pertinent question is 

whether or not our data are flawed if we are not dealing with species endemic to 

the study area. However, crabs persist even at bathyal depths, and the species 

particular to the study area are related closely enough to Callinectes that their 

decomposition is comparable. 

Because of their popularity and abundance, blue crabs are well-studied, 

and were used for this study primarily because of their easy availability. 

Although the crabs don't make up the bulk of the deployed specimens in the 

SSETI experiment, they are the most taphonomically sensitive organism of the 

group due to their chitinous test; thus they undergo the most change over the 

sample intervals and may be accurate predictors of the later taphonomic trends 

of the other deployed organisms. 

MORPHOLOGY 

The decapod body consists of a fused cephalothorax, a segmented 

abdomen, which in crustaceans has become completely folded under the 

cephalothorax, and pairs of appendages - antennae, mandibles, maxillae, and 

1 Habitat information from the web pages of the Marine Biological Institute at Woods Hole and 
the National Aquarium in Baitimore:http: / /www.nlb1.edu / htrnIlKEYS/ INVERTS/ 13/ list.htnl1 
and http: //www .aqua.org/ animals / species / bluecrab.html 
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legs - that are attached to each body segment. Callinectes, like all decapods, have 

five pairs of legs. The front pair of these legs is the chelipeds, or claws, which 

are used to catch and shell prey. The claws are made up of four main parts: the 

merus, the carpus, the manus, and the dactyls (see Figure 4). The dactyls are the 

most commonly preserved parts of our experiment crabs. The rear pair of legs is 

adapted into paddle-like appendages for swimming, in a modification peculiar 

to the species, and the central three pairs are simple walking legs. 

Figure 4: Crustacean morphology (from Schmitt, 1965, after Rathbun, 1935) 
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Skeleton: Macrostructure 

The skeleton of Callinectes is centrally composed of a hard shell or 

carapace, which is protected at the edges by a row of small spines; the carapace 

extends out to two larger single points at the lateral edges (see Figure 4). 

Dorsally, the carapace is separated into a number of smaller regions divided by 

faint grooves that are probably sutured, since they originally demarked the 

separate body segments (Glaessner, 1969). I suspect that in our experiment, the 

carapace broke first along these grooves. Callinectes does have an internal 

skeleton that serves as an attachment structure for muscles (Dennell, 1960), but 

this skeleton is much less calcified than the external skeleton, and so degenerates 

quickly; it was never found in our samples, and is rarely found in fossilized 

specimens. 

Like all arthropods, decapods molt several times during their life-span, 

but in contrast to other arthropods (most notably trilobites), they eat the 

discarded shell immediately after molting, in an effort to recycle the 

biomolecules that harden the carapace (Schmitt, 1965). Since this behavior is 

characteristic of all living decapods, it is fair to assume that fossil decapods 

practiced this as well, and as a result, crustacean molts usually aren't found in 

the fossil record. Thus, two problems, inflated population estimates and the 

difficulty in distinguishing between fossilized molts and bodies, common with 
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trilobites and other arthropods, do not arise in the study of fossilized 

crustaceans. 

Cuticle: Microstructure 

The crustacean shell, or cuticle, is made up of a protein-polysaccharide 

compound called chitin, which is hardened with CaC03 and other calcium salts; 

the more flexible shell material between body segments which allows the joints 

to move lacks these salts. The cuticle is divided into several distinct layers: the 

protective epicuticle and the endocuticle, which is composed of the pigmented 

layer, the calcified layer, and the uncalcified layer (see figure 5). 

in terprismat ic . 
" sePtum~~ ... . . " 

· ~~r:~IO~~~ 
b . 

calcified 
layer 

uncalcified 
layer 

duct of . 

'\ gland 

~~Ht'?':·:·:f/J.:11!ft. :· ::::·:1JjfJ:} epidermis 

Figure 5: Structure of the crustacean cuticle (from Dennell, 1960) 

All layers but the uncalcified layer predictably are calcified, and while the 

endocuticle is chitinous, the epicuticle is not. The epicuticle is a protective layer 

which contains lipid molecules, and is more impervious to the effects of acids 

than the inner layers are; this is also due to a thin binding membrane around the 
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epicuticle that is highly resistant to even strong acids (Dennell, 1960). Therefore 

once the epicuticle is gone, the cuticle is more likely to degenerate quickly in the 

presence of acids. The pigmented layer is heavily calcified, and contains 

granular deposits of a melanin-like substance (Dennell, 1960). Its structure, like 

the rest of the endocuticle, is laminated, and it is semi-porous. The calcified 

layer is the thickest of the layers, and is free of vacuoles and melanin-like 

substance. It does, however, carry a faint blue pigment that is spread 

throughout the layer. The uncalcified layer is relatively thin and simple, and is 

thought to be developmentally more primitive than the other layers; in contrast 

to the other layers, it does not appear until after each molt has occurred 

(Dennell,1960). It is likely that, due to the very different natures of the layers of 

the cuticle, the rate of degeneration changes drastically as each layer is 

subsequently worn away. 

CRUST ACEANS IN THE FOSSIL RECORD 

Crustaceans begin to appear in the Triassic (Glaessner, 1969), and Plotnick 

(1986) counts 366 known fossil genera, 86 of which are Brachyurans. Fossil crab 

assemblages have been described by Rathbun (1935) and Bishop (1986), and 

unusual preservation in coal beds (e.g. Imaizumi, R., 1959), and in concretions 

(e.g. Park, 1991, and Benson, 1950) have been described as well. In most 

instances, only chelipeds are found. 
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Because they are soft-bodied, crustaceans are usually found in the fossil 

record only under conditions of exceptional preservation (Martin, 1999). In 

general, they are rare, and are often found simply as an assemblage of claw 

pieces, but occasionally, an entire carapace or even the entire crab will be 

preserved. The soft parts of the crabs are rarely preserved, and this is the rule 

for most fossil assemblages. But in the rare instances where the soft parts of 

organisms are preserved, such as the Burgess Shale, a great deal of information 

can be obtained. 

Plotnick (1990) did a study of crab death assemblages in Texas, in a nice 

bridge between the study of the taphonomic processes themselves on one hand 

and their already-fossilized results on the other. Samples were taken by digging 

and coring in up to 15 cm of sediment in the nearshore environment. Crab parts 

were found at almost every site sampled, and at some sites carapaces and whole 

thoraxes were turned up. Many of the crab parts were small and difficult to 

identify without some knowledge of crab morphology, leading Plotnick to 

believe that crab remains are often overlooked in the fossil record for the same 

reasons. 

Almost no work has been done on paleoecological reconstruction of 

crustacean assemblages based on the taphonomic state of the fossils, but this 

may be due more to a lack of knowledge of the taphonomic process than to any 

deficiencies in the fossils themselves or in the amount of information the 

taphonomic process has to offer. All in all, crabs may be a more important part 

of the fossil record than has previously been thought. We just need to look more 
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closely for crab parts in fossil assemblages in which they aren't immediately 

obvious, and at the same time we need to look harder at the state of the 

fossilized crabs we already have for a clue to their paleoenvironmental 

significance. 

METHODS 

DATA COLLECTION 

Once the samples were collected, the crabs were removed from the mesh 

bag, labeled with the date and site name, frozen, and later transferred to ethanol. 

Sorting took place in the lab post-collection. The parts most often found were 

four dactyls, two mandibles (resembling molar-like teeth), the two large distal 

points on the carapace, and various small, calcified hard parts that I interpreted 

as mostly joint coverings and smaller spines from the carapace. All fragments 

that didn't fit into these four categories (mostly flat, uniform 'flakes') were 

categorized as carapace fragments (see Figure 6), although I suspect that some of 

these came originally from the manera (palms). Since the crab samples were 

deployed with two crabs in each bag, measurements were based on an initial 

assortment of four sets of claws, four teeth, and four carapace points. 

After sorting, counting, and cataloguing, qualitative and quantitative data 

were taken on each specimen: all samples were measured and weighed, and a 

protocol for degree of disarticulation and breakage was applied. 
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Because of the important role that burial plays in preservation, 

sedimentation rates were estimated from video footage at each site (see section 

on Sediment Cover, under 'Results'). 

Figure 6: Body part groups: clockwise from top left: carapace, carapace points, mandibles, joint 
covers, claws (center) 

MEASUREMENTS 

Length 

Length measurements were taken with electronic calipers (resolution to 

0.01 mm), and reflect the longest dimension of the fragment in each category, for 

each specimen. The claw pieces were separated into propodi (the bottom, or 

'fixed' fingers) and dactyli (the top, or 'free' fingers). The propodi were 

measured in two places: from the tip (sometimes broken off; in these cases, 

measurement was from the point of breakage) to the focus of the hinge (called 

"claw 1"), and from the tip to the longest reach of the side of the hinge (called 
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"claw 2"). (see Figure 7). The difference between the two lengths was studied in 

a preliminary way to investigate degree of breakage of fragile parts, as the side 

of the hinge is fairly unstable, and longer lengths in this area ,would perhaps 

indicate a better-preserved specimen. Indeed, the graphs of this difference 

showed similar trends to other measurements and assessments taken (see 

Figures 13 and 25). The 'claw l' measurement and the longest measurement of 

the dactylus were used as standard lengths, the length of the carapace point was 

taken by measuring the longest specimen, and the length measurement for the 

carapace fragments was taken simply by finding the longest dimension in the 

sample. Mandibles were measured, but did not yield any strong trends, and 

joint covers were not measured. 

Figure 7: 'Claw l' and' Claw 2' measurements. The difference of the two measurements is used 
as a proxy for good preservation 
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Normalization of Length Measurements 

A problem arises when considering the quantitative measurement data: 

no length or weight measurements were taken before the fresh crabs were 

deployed at the sites. This is not surprising, since the methods for quantifying 

subsequent degeneration were far from obvious when the experiment was 

planned. However, it makes it difficult now to assess whether differences in 

length and weight between samples is due to actual taphonomic processes, or to 

variation in the size of the original specimens. In an attempt to normalize the 

measurement data, I looked for a feature on the claw that is present in most 

specimens, and forms a consistent ratio with a full claw. The tip of the claw, 

where breakage very often occurs, is actually sutured; in most fresh specimens 

this can be seen in an abrupt change in color from dark blue at the tip to pinkish

orange on the claw. The total length of the bottom claw (propodus) from tip to 

hinge forms "a consistent ratio in fresh crabs of 1.29 to the segment from suture to 

hinge. In the top claw (dactylus), this ratio is 1.17.2 

With these ratios in mind, the measurement from suture to hinge was 

taken for the longest propodus and dactylus of each sample, when available. 

This measurement was then applied to the ratio, to obtain an estimate of the 

original length of the claw. The initial length measurement taken for the sample 

was then divided by this inferreq original length to obtain a number that 

represents the percentage of the claw that remains after x years at a depth y. 

2 These numbers represent the mean measurements taken on four sets of fresh crab claws. 
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Due to breakage, fourteen of the seventy-four samples weren't measurable, so 

the normalized data set is not complete, but is more accurate than the complete 

set of non-normalized length measurements taken previously. Another problem 

to take into account is the fact that many crustaceans have unevenly sized claws -

a large, dull one for grasping and a small, sharp one for cutting. Normalized 

measurements based on the small claw would give a false impression of being 

more degenerated when compared to measurements based on the large claw. 

However, the grasping and cutting claws of the fresh crabs were highly 

comparable in size, and this problem seems only to have arisen with one 

specimen. 

Weight 

All specimens were weighed on an analytic balance (resolution to O.OOlg). 

Weights were taken for each body part category, but since the only categories 

that showed any real variability from specimen to specimen were the claws and 

the carapace fragments, the data were organized into categories titled 'claw 

weight', 'carapace weight', and 'total body weight.' The latter represented the 

sum of the weights of each body part group. In the graphs and in further 

discussion, weight data are referred to with these category names. 

BREAKAGE AND DISARTICULATION PROTOCOL 

In an effort to quantify degeneration, I set up a protocol to measure the 

amount of breakage, on a scale from one to five, of the claws, carapace points, 
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and mandibles of each sample; the other body parts didn't lend themselves well 

to this type of evaluation. This results in a semi-quantitative system for ranking 

levels of degeneration. The protocol was set up to take both degree of breakage 

and missing parts into account. Even though the mesh size of the bags was fine, 

body parts were often missing, probably due to a combination of dissolution, 

breakage, and other environmental factors. However, since the loss of body 

parts is less informative taphonomically than the degeneration of the parts we 

have, breakage has a greater weight in the protocol than presence or absence of 

parts does. 

For the claws, the protocol is as follows (see Figure 8): 

1 - whole and articulated 

2 - whole tip to joint 

3 - missing the tips 

4 - fragmented above joint, but whole in cross-section 

5 - fully fragmented 

The number assigned to each specimen was based on the highest level of 

degeneration found in the specimen; for example, the protocol value for a claw 

sample where some of the claws are whole and some of the claws have missing 

tips is three. 

For the carapace points and the mandibles, the protocol is slightly 

different (see Figure 9): 

1 - all four whole and present 

2 - all whole, one to three missing 
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3 - fragmented, all present 

4 - fragmented, one to three missing 

5 - all missing 

Although the values obtained for each body part do stand on their own, the 

three values were also averaged to obtain an overall picture of the taphonomic 

effects of the environment over the entire crab; this average is discussed in the 

Results section. 

Figure 8: Values for the claw breakage protocol: l =whole and articulated; 2=whole tip to joint; 
3=missing the tips; 4=fragmented above joint, but whole in cross-section; 5=-fully fragmented. 

Microscope Analysis 

Samples were examined first with a light microscope for general surface 

trends like loss of pigmentation and large-scale pitting. Several samples from 

the BA transect were then examined using the scanning electron microscope for 

more specific instances of dissolution. Claw fragments were mounted on 
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aluminum stubs with conductive carbon cement, sputter-coated with gold, and 

examined, using a beam amplitude of 14 kilovolts, at up to approximately 540 

times magnitude. 

Figure 9: Values for the mandible/ carapace point breakage protocol: l=all four w~o~e and 
present; 2=all whole, 1-3 missing; 3=fragmented, all present; 4=fragmented, 1-3 mlssmg; 5=all 
missing. 

SEDIMENTATION 

Sedimentation rates were determined through careful assessment of the 

Bahamas video footage. Visual estimates of sediment depth on the bags were 

made for every site. The minimum amount of sedimentation seen was a 

'dusting', which was given a value of 0.1 centimeters. The maximum 

sedimentation found was approximately 5 em., which was sufficient to cover the 

mesh bags. 
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METHODS OF DATA ANALYSIS 

Since only one crab sample was taken each year and at each depth, our 

sample sizes are fairly small, and this makes data analysis difficult. In order to 

conduct a t-test or an Analysis of Variance test, the mean of a group of data for 

each depth and year are needed, whereas we have only one number. Therefore 

the data can not be supported by statistical verification, but can be considered a 

summary of the taphonomic information based on the available data. I looked 

for the best and worst preservation across a depth gradient by identifying the 

peak or peaks in each graph which represent the highest level of preservation, 

and the valleys or low points, which represent the lowest level of preservation. 

In some of the graphs, more than one peak or valley appears, or the point that 

represents a suspected high or low is very close in value to another point on the 

graph. In these cases, I have somewhat arbitrarily established a 10% threshold 

for significance: if a point is within 10% of another point on the graph, the two 

are considered equivalent and their difference is considered to be unimportant. 

If the two high or low points on the graph are more than 10% apart, the peak or 

valley is considered to represent a real difference in preservation quality. 
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RESULTS 

THE AA TRANSECT CRABS 

In general, the best preservation along the AA transect occurs in the 70 

meter to 88 meter depth range; although the deepest depths also show good 

preservation in a number of instances, these data are more variable. However, it 

seems that the nature of the crab shell is that different parts of the shell react 

differently to taphonomic processes. This makes overall trends difficult to pick 

out. 
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The crabs on the AA (northern) transect were deployed in 1993; a year 

later, specimens at 15 meters, 33 meters, 73 meters, 213 meters, and 267 meters 

were collected. Figure 10 shows the variation in non-normalized length of the 

dactylus, propodus, carapace point, and carapace fragment over the range of 

depths. The dactylus length peaked at 33 m; the propodus was longest at 33 m 

too, but was only 6% longer than 267 m site. The carapace fragment peaked at 

the 213 m site, and the lengths of the carapace points at the various depths were 

so close that, while the 213 m specimen was marginally longer, no significant 

trend appears. 
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Figure 11: Length after two years (AA) 

After two years, specimens were picked up at 15 meters, 33 meters, 73 

meters, 88 meters, 213 meters, 264 meters, and 267 meters. The length data were 

more scattered for this round of specimens, with fewer evident trends (see figure 

-- 11). Dactylus length peaks at 267 m, but is within 8% of the 88 m, 213 m, and 264 
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m specimens. Propodus length peaks at 213 m, but is only 6% longer than the 

267 m specimen. Carapace point length peaks at 70 m, and carapace fragment 

length peaks again at 213 m. 

Six-year samples 
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Figure 12: Length after six years (AA) 

After six years, specimens were retrieved at 15 m, 33 m (one from each of 

the two 33 m sites, S1 and 52), 70 m, 88 m, 213 m, 264 m, and 267 m 

Measurements from the two 33 m sites were averaged, and the result was a 

graph with a much more obvious trend: most body parts are longest in the 

middle depths (33 m - 213 m) and tail off at either end. Dactylus length peaks at 

33 m, 8% longer than the 70 m and 88 m sites. The propodus was longest at the 

33 m site, the carapace point was longest at the 88 m site, and the carapace 

fragment was longest at the 88 m site, although it was within 8% of the 267 m 

site. 
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Hinge length 

As was previously noted, this length (see Figure 7) may be a good proxy 

for preservation, as it is fragile, and is therefore more sensitive to destructive 

taphonomic processes. The difference in the 'c1aw1' and 'c1aw2' measurements 

showed trends similar to the length data: in the AA crabs, the largest differences 

in the two measurements occurred at 33 m after one year, at 88 m and 264 m 

after two years, and at 70 m and 267 m after six years (see Figure 13). This 

shows that short term response differs from the longer term, and reinforces the 

trends established in the length and weight measurements. 
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18~~~~~~~~~~~~~~ 

16+-----~------------------~ 

~ 14+---~~~~--------------~ E 
E 12 -B 10 +--:'--i--":·----------------:l1r----.tC.1I----3 

~ 8 +-..,;'---I~-6i.ilL---.:.;~ .. """_ ... ~~-------¥~;.....___l 

.! 6 +--;:.....y.------------~~......::,,*_,L.__-l -C 4 +---I-----------------_----3E......-___3 

2+--~-------------------------3 

50 100 150 200 250 300 

Depth (m) 

-+- Six-year difference 

............ Two-year difference 
...... :::::: ...... One-year difference 

Figure 13: AA 'Claw 2' - 'Claw l' measurements 

Normalized lengths 

One-year samples 

The normalized length data for the dactylus and propodus after one year 

is difficult to report. In this group, more than in any other, the normalizing 
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length was not complete in many of the specimens. All of the propodi 

measurements are present, however, and the graph of their length has a very 

sharp peak at 33 m. The ratio at this depth of the specimen's original measured 

length to the normalizing length is about 12% higher than the ratio at the 15 m 

site, the nearest data point (see Figure 14). 
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Figure 14: Normalized length ratios after one year (AA) 

Two-year samples 
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After two years, the normalized claw length data shows the now-familiar 

peak of preservation in the middle depths, tailing off to shorter fragments at 

both the shallow and the deep ends of the graph (see Figure 15). In this case, 

however, the propodus ratio peaks at 88 m and varies greatly, whereas the 

dactylus ratio peaks at 213 m, but is more uniform: the 88 m ratio is only 6% 

lower. 

Six-year samples 
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Figure 16: Normalized length ratios after six years (AA) 

The six-year normalized length data is also somewhat inconclusive. Both 

dactylus and propodus trends are fairly uniform, and both maxima are within 

5% of the next highest value (see Figure 16). In this sample the dactylus data 

peaks at 73 m, and all sites except for the 264 m site are wi thin 8%, giving us 

very little information. The propodus data peaks at 213 m, and is within 9% of 

the 88 m and 33 m sites. 
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Weight 

One-year samples 

One-year weight - AA 
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Figure 17: Weight after one year (AA) 
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Weights of crabs that had been deployed for one year were surprisingly 

uniform (no two measurements are more than 4.92 grams apart), and also 

surprisingly low compared to later years (see the time trend section below). The 

claw weight is highest at the 33 m site, but is within 6% of the 213 m site and the 

267 m site. The carapace weight is highest at the 267 m site, and the total body 

weight is highest at the 33 m site, but is within a mere 2% of the 213 m site and 

the 267 m site, and is likely not significant (see Figure 17). 

Two-year samples 

The weight data for the two-year group of samples looks similar to the 

six-year length data (see Figure 18). Carapace weight and total body weight are 

both highest at the 88 m site. Claw weight is highest at the 267 m site, but this 
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weight is only 2% higher than the weight of the 70 m specimen, and so not 

considered different. Variation between depths over the whole graph, however, 

particularly in the total body weight category, is substantial. Again, the trend of 

these data show a distinct high at middle depths. 

Two-year weights - AA 
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Figure 18: Weight after two years (AA) 

Six-year samples 
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The six-year weight trends again show a peak in preservation around the 

70 m- to 88 m range (see Figure 19): The claw weight is highest at the 73 m site, 

exactly 10% higher than at the 213-m site. Carapace weight is highest at the 88 m 

site, but only 6% higher than the 267-m weight. Total body weight, however, is 

conclusively highest at the 73 m site. Variation in weight is high across the 

depth gradient. In this graph, however, it is also significant to note that the 

carapace weight and claw weight trends mirror each other in a marked way. 

When one is increasing, the other is decreasing, and vice versa. This is also true, 
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although over a smaller depth range, for the 2-year data. This seems to suggest 

that processes that preserve the carapace are degenerative when applied to the 

claws, and vice versa. 
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The disarticulation/breakage protocol values (taken as the average of the 

protocol numbers for the claws, mandibles, carapace points to represent 

degeneration over the entire body) show little variation, due to the somewhat 

narrow numerical scale, but the peak in preservation (in these cases the lowest 

number) for the one-year samples occurs at the 33 m site. The 267 m site is a 

close second, but is outside the 10% window, and the rest of the samples are 

ranged in greater states of degeneration (see Figure 20). 
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Figure 21: Disarticulation/ breakage averages after two years (see Figures 8-9) (AA) 

After two years, the variation in degeneration has increased. The peak for 

this group of specimens is at the 88 m site, and the difference between this 

protocol value and the next-highest value is two-thirds of a protocol point, 

which amounts to 13% more degenerated (see Figure 21). 

Six-year samples 
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The six-year data show the widest variation of all the protocol data. The 

best preserved of these specimens occurs at 267 m deep; the 88 m site is 12% 

lower (more degenerated), but this value is only 2/3 of a protocol point (see 

Figure 22). 
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Figure 22: Disarticulation/breakage averages after six years (see Figures 8-9) (AA) 

THE BA TRANSECT CRABS 

300 

In general, the BA (southern) transect data showed fewer strong trends 

than the AA data. Highs in preservation occurred most often at the deeper sites: 

at 183 meters, 253 meters, and 262 meters. The lack of strong trend may be due 

to the fact that the BA transect is further than the AA transect from a tidal 

channel between islands (Parsons-Hubbard, et. al., 1999, p. 341), and may 

therefore be slightly more protected from reversing tidal currents, increasing the 

time it takes for specimens to degenerate. In addition, six-year samples have yet 

to be collected from the BA sites. 
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Length 

One-year samples 

Specimens were deployed in 1994, and gathered from one of the 15 m 

sites, one of the 70 m sites, the 183 m site, the 195 m site, the 226 m site, the 253 m 

site, and the 262 m site. The one-year length data are somewhat confusing, with 

no general trends among the four body part groups (see Figure 23). Again, we 

see the same opposite trend between the claw length and the carapace length 

that showed up in the six-year AA crab weights. The carapace length peaks at 

183 m, 10% higher than the length of the 195 m sample, and is lowest at 226 m, 

while the dactylus has its lowest value at 183 m, and its highest at 253 m. The 

propodus lengths and the carapace point lengths have less definite trends: the 

propodus line has peaks at 183 m and 253 m within 8% of each other, and the 

carapace point trend has peaks at 70 m, 183 m, and 253 m, all within 4% of each 

other. Clearly, in this case it is hard to tell the signal from the noise. 
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Two-year samples 

Specimens were picked up after two years at two 15 m sites, two 33 m 

sites, two 70 m sites, the 183 m site, the 226 m site, the 253 m site, and the 262 m 

site. Data from depths where there are two sites (15 m, 33 m, and 70 m) have 

been averaged to give more accessible information. The graph of the lengths 

again shows little trend (see Figure 24). The only definite high occurs for the 

carapace point at 253 m. Inconclusive highs occur for the propodus at 262 m and 

253 m (10% apart); for the dactylus at 33 m (7% larger than the 70 m, 226 m, and 

262 m values); and for the carapace fragment at 253 m and 262 m (4% apart). 
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Figure 24: Length after, two-years (BA) 

Hinge length 

In the BA crabs, the difference between the 'clawl' and the 'claw2' 

measurements (Figure 25) were again similar to length and weight data. The 

largest differences were found at 183 m and 262 m after one year, and at 70 m 

and 253 m after two years. 
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'Claw 2' - 'Claw l' measurements - BA 
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Figure 25: BA 'Claw 2' - 'Claw l' measurements 
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Figure 26: Normalized length ratios after one year (BA) 

Data for the normalized length data after one year is markedly different 

from the uncorrected length data, which shows a large dip in preservation at the 
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middle depths. This graph (Figure 26), although incomplete, shows a more 

stable, straight trend with a swing upwards at the deep end. The dactylus peaks 

at 226 m, but is only 2% greater than the 253 m site, and the propodus peaks at 

253 m, but is only 5% higher than the 226 m site. 

Two-year samples 
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Figure 27: Normalized length ratios after two years (BA) 

The normalized two-year length data is lacking the crucial middle-depth 

measurement, leaving two clusters of data, and no real trend (see Figure 27). 

Peaks occur at 226 m for the dactylus, and at 262 m for the propodus, but both of 

those values are within at 10% of one or two other sites. Normalizing this data 

didn't shed a lot of light on the original measurements taken on the two-year 

samples. 
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Weight 

One-year samples 

The graph of the weights of the samples by depth after one year show a 

somewhat striking lack of variation (see Figure 28); the difference between the 

lowest and highest total body weight, for instance, is only slightly more than two 

grams. The best preservation is deeper than on the AA transect, though; highs 
, ,/ 

occur at 253 m for the claw weight (16% higher than the 70 m site) and the total 

body weight (16% higher than the 195 m site). The high for carapace weight 

occurs at 195 m, only 6% higher than the nearest peak, at the 183 m site. Again, 

it is interesting to note that the carapace weight trend and the claw weight trend 

are reverse images of each other. 
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Figure 28: Weight after one year (BA) 

Two-year samples 
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The graph of sample weights after two years shows an unexpected low in 

preservation at 183 m, and the amount of variation, especially when compared to 
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the one-year data, is large. All three categories have their lowest point at 183 m, 

by margins of 50% or more. All three also have their highest point at the 262 m 

site, by at least 13% (see Figure 29). 
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The one-year disarticulation protocol data has a peak in preservation 

(represented in this case by the lower numbers) at 183 m, 20% better than the 

next smallest value, and tailing off to both sides of the trend (see Figure 30). 

Variation is fairly high. 

Two-year samples 

After two years, the peak in preservation has moved a little deeper, to 226 

m, which is 11 % better preserved than its nearest neighbor (see Figure 31). The 

variation of the protocol values is similar to that of the one-year data. 
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Figure 31: Disarticulation/breakage averages after two years (see Figures 8-9) (BA) 

SURFACE CONDITIONS 

300 

Examination of the surfaces of the crab samples showed that the 

epicuticle, which gives fresh crab shells their slightly shiny appearance, was 

gone in all of the specimens, which had uniformly chalky surfaces. In most of 
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the samples, the pigmented layer of the endocuticle was gone as well, leaving 

the crab remains with a dull tan to white color. Pitting and cracking were 

evident, as was the layered structure of the cuticle; many samples showed 

breakage along these layers. 

The scanning electron microscope images were somewhat difficult to 

interpret, but nevertheless showed a general trend of worse preservation and 

greater evidence of dissolution with increased depth. The control crab and the 15 

m sample exhibit almost no pitting; the surface of the shell is fairly smooth 

except for extensive stringy features in the 15 m crab specimen, which I take to 

be the epicuticle or the pigmented layer degenerating (see Figures 32-33). 

Figure 32: SEM image of fresh control crab shell 
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Figure 33: SEM image of claw dissolution at the 15 m site 

The 33 m specimen and the 183 m specimen are almost identical, with a 

minimum of pitting and a fairly even surface (see Figures 34-35). Surface 

conditions at the 253 m site are much worse, with larger, more abundant 

individual pits and a more uneven surface, indicating more dissolution (see 

Figure 36). Given more time, it would be worthwhile and interesting to examine 

specimens from more of the AA sites as well as the BA sites. It has been shown, 

too, that the different parts of the crab shell dissolve at different rates (Plotnick, 

personal correspondence); since all the microscope samples were taken from 
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claw pieces, it is possible that analyzing a different body part, perhaps pieces of 

the carapace, would yield more information. 

, , 

Figur~ 34: SEM image of daw dissolution at the 33 m site 

Figure 35: SEMimage of claw dissolution at the 183 m site 
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Figure 36: SEM image of claw dissolution at the 253 m site 

TIME TRENDS 

Surprisingly, time of residence on the sea floor does not seem to play 

much of a part in the comparative preservation of specimens along either 

transect. More often than not, sample measurements either remain constant or 

are slightly better preserved with longer deployment times, suggesting that the 

major portion of the degeneration occurs within the first year, after which more 

time on the sea floor doesn't affect the preservation of the samples too much. 
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SEDIMENT COVER 

AA Transect 

After one year, barely any sedimentation along the AA transect had taken 

place. Sedimentation was highest at the 33 m site and several of the deep sites, 

and bags were most exposed at the 15 m site and in the middle depths. Unlike 

preservation data, the sedimentation trends show a very steady increase with 

time (see Figure 37). 
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The BA transect shows a pattern of sedimentation similar to the AA 

data-highest after two years at the 33 m site, a smaller peak at the deepest sites, 

and relatively little sedimentation in the middle depths (see Figure 38). Again, 

there is a marked increase in sedimentation over time. 

TEMPERATURE AND SALINITY 

Seawater salinity and temperature measurements were taken on several 

dives during the 1995 collection period, and the trends have a fairly consistent 

shape between the two transects (see Figure 39, but note the different scales on 

the AA and BA graphs). In general, these data are probably consistent through 

time and in the region of both transects; an unusually large increase in 

temperature or salinity would be required to affect any regional oceanic change. 
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Figure 39: Temperature and salinity trends from two 1995 dives (courtesy Parsons-Hubbard) 
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Temperature 

Temperature decreases from about 30.50 C (870 F) at the shallowest depth, 

around 5 meters, to about 18.50 C (65 0 F) at the deepest sites, between 260 and 

275 meters. Temperature is fairly constant up to a depth of between 60 and 75 

meters (close to the bottom of the photic zone), at which point it starts to 

decrease rapidly between 75 and 90 meters, and then at a somewhat slower 

constant rate down to the deepest sites. 

Salinity 

On average, seawater contains salts at a concentration of approximately 35 

parts per million, although in tropical areas like the Bahamas this value is 

slightly larger due to evaporation. Along the two study transects, salinity ranges 

from approximately 36.3 parts per million at the shallowest depth (5 m) to a high 

of about 37 ppm at 120 m. Seawater salinity decreases from there, and at the 

deepest site (around 260 to 275 m), salinity is 36.6 ppm. It is interesting to note 

that the beginning of this spike in salinity coincides with the best-preserved 

specimens on the AA transect, at 73 and 88 meters. The spike ends between 150 

and 175 meters, so these sites are the only ones that fall within this range of 

unusually high salinities. 

DISCUSSION 

Over the course of this study, these crabs have undergone an impressive 

amount of change. After only a year at even the most taphonomically inviting 
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depths, our crabs were transformed from whole animals into small piles of dust 

and debris. Only a few samples actually contained a still-articulated claw (the 

six-year 73 m AA site and the six-year 267 m site), and these samples had 

already begun to disarticulate themselves after retrieval. Retracing this path of 

degeneration has been interesting and at times surprising; trends I expected 

were nonexistent, and other trends that I would have deemed unlikely emerged 

instead. In the literal sense of the word, this research is groundbreaking in the 

field of modern taphonomy, so every result that emerges is of interest. 

The breadth of this study is also one of its weaknesses, however. In an 

experiment of this magnitude, reconciling the large amount of data collected 

with the near-unlimited number of destructive and preservative factors that can 

be at work in the open ocean is a daunting task. However, trends do appear in 

the data, and some factors are more likely than others to strongly affect the 

deployed specimens; while I can't say conclusively that the data are directly 

caused by a specific environmental factor, I think I can present a few reasonable 

explanations for the trends in preservation observed. 

Preservation is poorest at the shallow depths in all cases, but in many 

cases it is poor at deeper depths as well, and best in the middle depths. This is 

hard to explain with a single cause, but if there were one explanation for poor 

preservation at shallow depths and a different explanation for poor preservation 

at deep depths, then their interference would leave a space in the middle depths 

where good preservation is possible (see Figure 40). 
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Figure 40: The interaction of shallow and deep water degenerative processes 

In shallow waters, wave energy, predators, and microbial and bacterial 

decomposition playa huge part in the destruction of the crab remains, but these 

factors are much less important at depths below wave base and the photic zone 

(approximately 100 m). In the deeper depths, dissolution may playa larger part, 

since calcium carbonate solubility increases as temperature decreases and 

pressure increases (Linke, p. 270). Thus deeper, colder waters have the potential 

to retain more CaC03, and in the reaction CaC03 ¢:::> Ca 2+ + C0
3 

2- , whereby the 

calcite crab shell is dissolved into the surrounding water, equilibrium is shifted 

to the right, in favor of dissolution, and subsequent decalcification of the chitin 

shell. Carbonate undersaturation is also the result of the CO
2 

buildup from 

oxidation of organic matter (Canfield and Raiswell, 1991), a common occurrence 
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in deep, oxygen-rich waters. These mechanisms for deep-water degeneration 

are also supported by the scanning electron microscope images, which show 

grea ter dis sol u tion at greater depths. 

Several other factors may contribute to the unusual level of preservation 

found at the middle-depth sites: degree of burial, and salinity of surrounding 

water. Burial is thought to be a key to taphonomic preservation, but in this 

instance, sites with more burial did not necessarily coincide with better-

preserved sites. It has been pointed out that predation is a major factor in 
'-... 

taphonomic degeneration (Plotnick, 1986), and it is likely that burial prevents 

predation at least by macro-organisms. It may be that in this case, the fine mesh 

of the bags containing the specimens has served the same protective function 

that sediment burial does under normal circumstances, and so the protective 

effects that sedimentation have are masked by the protective effects of the mesh 

bags. 

Another factor that may playa part in the selective preservation of the 

crab parts is seawater salinity. A spike in the salinity graph occurs at about 75 

meters (see Figure 39), coincident with some of the sites of best preservation on 

both transects. A quick explanation for this is not as easy to come up with, but it 

is possible that the slight increase in salinity changes the environment enough to 

alter its biotic makeup, modifying or eliminating the degeneration that is the 

result of micro- and macro-predation and scavenging. Since the holes in the 

mesh are small enough to exclude larger predators and scavengers, micro-

organisms are likely to playa part. Canfield and Raiswell (1991) discuss boring 
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micro-organisms; boring algae are active only in the photic zone and can be 

quite destructive, while boring fungi are found at depths up to 800 meters. It 

may be that the patterns left by the two are different enough that they create 

different types of degeneration in shallow and deep water. In any case, we may 

need to wait for more data before we are sure; the conclusive answers to the 

questions raised in this research project may come with the collection of another 

round of samples in the summer of 2001. 

CONCLUSIONS 

Although the body of data in this study was somewhat small, I feel that a 

significant trend of good preservation of crab parts in the middle depth ranges 

of a Bahamian carbonate platform was documented. When considered along 

with chemical and biological principles, as well as the work of other researchers 

in this field, this trend is well-justified, and may prove to be applicable to other 

marine environments. 

Another round of specimens is due to be collected in the Bahamas in the 

summer of 2001, and this data will certainly add an important component to the 

conclusions I've arrived at in the course of this project. It will be interesting to 

see whether the data support these original findings, refute them, or a little of 

both. In any case, the taphonomic data that has been gathered on the crabs may 

be extremely useful in predicting the future taphonomic behavior of the 

molluscs and urchins in the larger SSETI study. 
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Once we begin to understand the ways in which environment affects 

alteration and preservation of organisms in modern oceans, we can finally begin 

to reconstruct a complete picture of the paleoenvironments in which fossil 

organisms lived and died. 
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