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Payment Schemes and Moral Hazard

James Foust

April 4, 2013

1 Introduction

In a principal-agent relationship, the principal o↵ers a take-it-or-leave-it contract to the
agent, who decides to either accept it or not. In game theory terminology, the principal-
agent relationship is a Stackelberg game in which the principal is the leader, proposing
the contract, and the agent is the follower, choosing to accept or reject the proposal.
Examples of such relationships are plentiful, such as a principal bank manager hiring an
agent employee to work as a teller, a principal land-owner acting hiring an agent farmer
to grow crops on her land, or an insurance company o↵ering a home insurance plan to a
homeowner. The principal-agent problem concerns how the principal should structure the
proposed contract to best incentivize the agent to perform in the way the principal would
prefer, taking into account that there are informational asymmetries between the principal
and the agent due to the agent having some kind of “private information.” Information
asymmetries between principal and agent fall into two categories: the agent might have
private information about their own characteristics, which gives rise to adverse selection
problems; or the agent might have private information about what actions he takes after
agreeing to the contract, which gives rise to moral hazard problems. In this paper, I focus
on a model with moral hazard. The texts by Kreps [3] and Salanié [5] both o↵er good
expositions of canonical adverse selection and moral hazard problems, which I used as a
starting point for this paper. The survey of di↵erent extensions of the principal-agent
model by Sappington [6] provided a high-level guide to di↵erent sub-problems and primary
sources.

To motivate the model analyzed in this paper, suppose you own several tracts of land
that are suitable for agriculture. You want to set up farms on these tracts of land, but
you lack the time or expertise to farm the land yourself. You decide, then, to hire several
farmers to set up and manage farms on your land. The farmers work year-round and, come
harvest time, you pay each of them a sum of money based on their total production. Your
challenge is to decide how much money to pay each farmer. Ideally, you would like to be
able to pay each worker for the amount of e↵ort that they put in. Unfortunately, you are
only able to observe each farmer’s output, and there are factors other than the farmer’s
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e↵ort level that a↵ect output. For instance, the amount of rainfall is a random variable
that a↵ects all farmers’ output equally, but which you are unable to observe. There are
also idiosyncratic random variables unique to each farmer that represent the e↵ects of soil
condition, pests, and other similar concerns on the tract of land that farmer is working.
All else equal, each farmer would prefer to work as little as possible, because they find
working displeasurable. As the principal, however, you want the farmers to work as hard
as is necessary to maximize your profits. The problem you face is how to structure the
farmers’ payment scheme so as to align their incentives with your own.

The following analysis will compare individual contracts, in which each agent’s payment
is based only on the realized magnitude of their output, and tournament payment schemes,
in which each agent’s payment is based only on the ordinal ranking of their realized output
relative to that of all other agents’. Much of the model notation as well as the results
from Section 5 are an expanded exposition of results from a paper by Green and Stokey
[1]. Lazear and Rosen [4] provided helpful intuition for the comparison of contracts and
tournaments, and some of the results from earlier sections of the paper are due to Grossman
and Hart [2].

2 Model Definitions

The principal-agent problem, in general terms, concerns how to align the incentives of a
rational, self-interested agent party with the interests of a di↵erent principal party. In the
problem described above, the land-owner is the principal and each of the hired farmers are
agents. In this section I define in precise terms the nature of this principal-agent problem.

Each agent i chooses some action level ai 2 R+ which can be interpreted as an e↵ort
level. In general, the principal wants the agent to exert more e↵ort by choosing a higher
action level, which increases production, while the agent would like to choose a lower action
level. The principal makes a payment of mi 2 R+ to agent i.

For each agent i, there is a utility function

U

i(mi, ai) = u(mi)� ai,

where u : R+ ! [0, B], u(0) = 0, is a function that defines how much utility the agent
gains from the payment he receives. It is natural to assume that this function is strictly
increasing, du > 0, since if an agent receives more money he will be a↵ord more things
to satisfy his needs and desires. We will also assume that the function is strictly concave,
d2u < 0. This assumption, called the law of diminishing marginal utility, is common in
economic analysis. The intuition is essentially that the less money a person has, the more
valuable a given increase in their wealth is to them. A person living in poverty would
benefit much more from a million-dollar windfall than a person who’s net worth is already
in the billions of dollars.

This formulation assumes that utility is additively separable into a utility of payment
term and a disutility of e↵ort term. This means that the marginal utility of an increase
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in payment is constant in action level, and vice versa; it does not allow for how hard an
agent is working to a↵ect how that agent values a payment, nor does it allow how much
an agent is being paid to have an a↵ect on the disutility of e↵ort for that agent.

Each agent additionally has a reservation utility u

0
> 0 representing the agent’s ex-

pected utility of not entering into a contract with the principal. This is the expected utility
of whatever the agent’s next-best use of their time and e↵ort is.

For each agent i there is a production function that gives yi, the gross revenue generated
by agent i

yi = zi + ✓,

where ✓ 2 R is a random variable a↵ecting the production of every agent–a “common
shock”–with E[✓] = 0, and zi is a random variable whose distribution depends on ai. ✓

represents the state of nature that a↵ects the production levels of all agents, such as the
amount of rainfall or the average temperature in a given year. The zi contains the part
of agent i’s production that is due to idiosyncratic factors, including agent i’s choice of
action. Let F ( ; ai) be the cumulative distribution function of zi given that action ai was
taken, and let f( ; ai) be the continuously di↵erentiable density function. So if agent i

takes action ai, the probability that the idiosyncratic part of their production is equal to
or less than some level zi is F (zi; ai), and the likelihood that it is very near zi is f(zi; ai).

Each agent observes a signal �i 2 R about the value of ✓. Let G(✓,�) be the joint
distribution function of ✓ and � = (�1,�2, . . . ,�n). G summarizes the agents’ information
about the distribution of ✓. We assume that zi and (✓,�) are independent. This formulation
allows for cases where each agent receives the same signal and is perfectly informed of the
value of ✓ by the signal they receive, i.e. when ✓ = �1 = �2 = . . . = �n with probability
1. It also allows for cases where the signals agents observe aren’t necessarily the same and
contain no useful information about the value of ✓, when

G(✓|�) = G(✓|�0) 8�,�0 2 Rn
,

and for many situations between in which agents are partially but imperfectly informed
about the value of ✓. The one restriction that this specification of G(✓,�) does place on
our model is that it assumes all agents’ information sets are identical except for the signal
they receive about ✓.

We assume that all agents and the principal know the distributions G, F , and f . Each
agent i is aware of their choice of action ai and of the signal �i. The agents do not know
one another’s choice of action or signal, and the principal does not know any agent’s choice
of action or signal.

2.1 Agent’s Problem

Agent i is faced with the following problem: what level of action should they take in order to
maximize their total expected utility. In the most general formulation, we can characterize
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this problem as follows. Agent i is faced with some reward function Ri : Rn ! R+ that
maps vectors of the productions of all n agents, y ⌘ (y1, y2, . . . , yn), to mi, the amount of
compensation agent i receives when the production levels y1, . . . , yn are realized.

Definition 2.1. Define vi : Rn ! [0, B] as vi(y) ⌘ u[Ri(y)], the payment to agent i in
terms of utility. Then, the cost to the principal of providing this level of utility is �[vi(y)],
where � ⌘ u

�1. Since u is strictly increasing, it must be a bijection, and so we know that
the inverse, �, exists.

Then, the agent must choose an action ai(Ri) that is a solution to the maximization
problem

argmax
a

E[vi(y)� a] = argmax
a

Z

y2Rn
vi(y)P (y|a) dy � a, (2.1)

where P (y|a) is the likelihood that the production vector y occurs, given that agent i has
chosen action a. In words, the agent seeks to choose an action that maximizes the expected
utility of the payment he will receive net the disutility of his chosen action level.

2.2 Principal’s Problem

We assume that the principal is risk neutral, or similarly that if the principal is risk averse
he is able to diversify away risk by engaging in similar relationships with multiple agents.
The principal, then, wants to maximize total profits–the expected value of the sum of all
agent’s outputs minus the total of all payments made to them–given that the agent is going
to take action ai(R) that solves problem (2.1). The principal seeks to design a payment
scheme R = (R1, R2, . . . , Rn) to maximize

E

 nX

i=1

[yi �Ri(y)]
��� ai(Ri)

�
. (2.2)

In this paper, we will examine two di↵erent kinds of payment schemes that the principal
can choose to use. One payment scheme is individual contracts. Under an individual
contract, each agent’s payment depends only on his own level of output. An example of
such a payment scheme would be a piece-rate wage, in which a worker is paid a fixed
amount for each unit of production. Individual contracts can also be more complicated
than a simple piece-rate, but always depend on only the level of output achieved by the
agent. Under a tournament payment scheme, each agent’s payment depends only on the
ordinal ranking of his output relative to that of the other agents. The agent who has the
highest output receives a certain payment, regardless of what magnitude of output that is.
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3 First Best

In the first best solution to this principal-agent problem, the principal can perfectly observe
the agent’s choice of action a. Moral hazard is not an issue in the first best case, because
the agent’s chosen action is not hidden information. The principal can o↵er contracts in
which payment depends not on observed output, but instead on a.

Definition 3.1. Let CFB : R+ ! R+ be defined as CFB(a) ⌘ �[a + u

0]. CFB(a) is an
agent’s reservation price for taking action a in the first-best situation.

For any action a

⇤, the principal can o↵er an agent a contract in which the agent’s
compensation, m, is

m =

(
CFB(a⇤) if a = a

⇤

0 if a 6= a

⇤
.

Under this contract, if the agent takes some action other than a

⇤ his net utility is

U

i(m, a) = u(0)� a

= �a (since u(0) = 0)

 0,

but if he takes action a

⇤, his net utility is

U

i(m, a

⇤) = u[�(a⇤ + u

0)]� a

⇤

= a

⇤ + u

0 � a

⇤

= u

0

> 0.

Because U

i(m, a

⇤) > U

i(m, a) 8a 6= a

⇤, the agent will always choose a

⇤to solve problem
(2.1). So in the first best case, the principal can force the agent to take any action a at an
expected cost of CFB(a).

Definition 3.2. Let B(a) : R+ ! R+ be defined as B(a) ⌘
R
yf(y; a) dy. B(a) is the

expected revenue for an agent taking action a.

Then, in the first best situation, the principal’s problem reduces to maximizing profit–
the di↵erence between B(a), the expected revenue from an agent taking action a, and
CFB(a), the cost of getting an agent to take action a:

PFB ⌘ max
a

[B(a)� CFB(a)]

= max
a

Z
yf(y; a) dy � �(a+ u

0)

Above, PFB is the principal’s expected profits in the first best case. Call the argument
maximizing the above problem afb, the first best e�cient action level.
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4 Second Best

Unfortunately, the principal cannot observe the action taken by each agent. The prin-
cipal must observe y = (y1, y2, . . . , yn), which are correlated with the agents’ actions
a = (a1, a2, . . . , an), and base the agents’ payment on the observed realization of y. This
complicates the principal’s problem, because they now have to take into account moral
hazard.

4.1 Risk Neutrality

We’ve explicitly stated our assumption that the principal is risk neutral. An attentive
reader may have noticed that we have also assumed that the agents are risk averse by our
formulation of the utility function U

i(mi, ai), specifically by requiring that d2u < 0. Since
u is concave and y is a random variable, we know that

E

⇥
u[Ri(y)]

⇤
 u

⇥
Ri[E(y)]

⇤

by Jensen’s Inequality, which states that the expected value of a concave function evalu-
ated over a random variable is greater than or equal to the value of the concave function
evaluated at the expected value of the random variable, with equality if and only if the
function is not strictly concave or the random variable follows a degenerate distribution,
i.e. it is in fact a constant. From the above it’s clear to see that

E

⇥
u[Ri(y)]

⇤
� a  u

⇥
Ri[E(y)]

⇤
� a 8a,

which means that, all else equal, an agent will prefer a constant payment rather than a
random payment with the same expected value.

Our assumption that the agents are risk averse not only makes sense from a pragmatic
point of view, for the reasons discussed above that economists usually assume the law of
diminishing marginal utility, but also from a theoretical one. In the case that the agent is
risk neutral, it is easy to see that the principal can achieve an equivalent outcome to the
first best by shifting all of the risk to the agent–by “selling the franchise” to the agent.
The principal does this by paying the agent

I

⇤ = y � k,

where k is a constant “franchise fee” equal to the expected surplus resulting from the agent
taking the e�cient action afb

k =

Z
yf(y; afb) dy � �(afb + u

0)

=

Z
yf(y; afb) dy � CFB(afb).
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Faced with this compensation scheme, the agent chooses an action level a to solve

argmax
a

E[u(I⇤)� a]

= argmax
a

E[u(I⇤)]� a (a is constant)

= argmax
a

u(E[I⇤])� a (because agent is risk neutral, d2u = 0)

=argmax
a

u

 Z
yf(y; a)� yf(y; afb) + CFB(afb) dy

�
� a

=argmax
a

u

h Z
yf(y; a) dy

i
� u

h Z
yf(y; afb) dy

i
+ u

h Z
CFB(afb) dy

i
� �(a)

(because d

2
u = 0 and u(0) = 0)

=argmax
a

Z
yf(y; a) dy � �(a). (dropping constants from maximization)

= argmax
a

Z
yf(y; a) dy � �(a+ u

0)

The last step above just increases the objective function by a constant, since we are as-
suming that the agent is risk neutral and

d

2
u = 0 () d

2
� = 0

u(0) = 0 () �(0) = 0

Note that the final objective function above is the same as the objective function the
principal seeks to maximize in the first best case (3.3). The agent’s incentives are aligned
with the principal’s, and the agent will choose to take the e�cient level of action afb. The
agent will expect to have a net utility level equal to their reservation utility, while the
principal will have a guaranteed profit equal to the profit he would expected in the first
best case, PFB.

We’ve shown that if the agent is not risk averse, the principal can design a payment
scheme which achieves the first best outcome. However, when the agent is risk averse such
a scheme cannot be used. In the formulation we will examine, the agent’s risk aversion
pushes the principal away from the compensation scheme outlined above, in which the agent
assumes all of the risk of the business. Since the agent is risk averse and the principal is
risk neutral, the optimal risk sharing arrangement is that the principal assumes all risk and
the agent receives a flat payment. However, such a payment scheme is not possible in the
second best case, because the agent has no incentive to choose a high action level if their
payment is not dependent on output. In the second best case with risk aversion, then, the
principal’s optimal payment scheme will lie somewhere between shifting all of the risk onto
the agent and assuming all risk themselves by making a constant payment to the agent.
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4.2 Contracts

The above compensation scheme is an example of an individual contract, in which each
agent’s pay depends only on their own level of output. The performance of other agents
does not have any e↵ect on the payment. More generally, we can describe a contract as a
payment function and a decision rule.

The payment function above was I

⇤ = y � k. In the general case, we will write a
payment function as R : R ! R+ or, in utility terms, v : R ! [0, B] where, as defined in
definition 2.1, v(yi) = u(R(yi)).

The decision rule is a function, A : R ! R+, that relates the signal observed by an
agent, �i, to the e↵ort level that agent chooses, A(�i), to maximize their expected level of
utility. The factors a↵ecting an agent’s choice of e↵ort level are the agent’s information
about the value of ✓, summarized in the distribution G, the reward function facing the
agent, and F . In this paper, I focus on symmetric equilibria in which all agents share the
same decision rule ex ante, and choose di↵erent levels of e↵ort only if they observe di↵erent
signals about the value of ✓. Above, the decision rule was A(�i) = afb 8�i, meaning that
each agent will take the first best e�cient action regardless of what he anticipates ✓ to be.

Given G, F , and a payment function v, a decision rule A is said to be “valid” if, for all
�i, A(�i) is a solution to the Agent’s Problem (2.1),

argmax
a

Z
v(y)

Z
f(y � ✓; a) dG(✓,��i|�i) dy � a,

where ��i = (�1, . . . ,�i�1,�i+1, . . . ,�n).
With a contract, then, the principal must choose a payment function and a decision rule

(v,A) to maximize expected profits (2.2) subject to the constraint that A be a valid decision
rule for the agent given v, called the “incentive compatibility constraint”, and the constraint
that the agent have an ex ante expected utility of at least u

0, called the “participation
constraint.” The participation constraint is ex ante because it only requires that the agent’s
expected utility before they observe �i is greater than u

0, and not necessarily that, once �i
is observed, their expected utility is greater than u

0 given �i. The incentive compatibility
constraint applies ex post the realization of �i; A(�i) must maximize (2.1) for every �i.

Definition 4.1. Given G, the joint distribution of ✓ and �, define the set of feasible
contracts

Sci(G) ⌘ {(v,A)
��
v : (R)+ ! [0, B], A : R ! R+;

A(�i) 2 argmax
a

Z
v(y)

Z
f(y � ✓; a) dG(✓,��i|�i) dy � a, 8�i; (4.3a)

ZZ
[v(y)�A(�i)]f [y � ✓;A(�i)] dG(✓,�i) dy � u

0}. (4.3b)
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Here, (4.3a) is the incentive compatibility constraint which must hold in order for A to
be a valid decision rule, and (4.3b) is the participation constraint which must hold in order
for the agent to agree, ex ante, to the contract rather than simply walking away from the
arrangement with his reservation utility u

0.
Note that for any G, we know that Sci(G) is non-empty because it must contain the

“no incentive” contract, (v0 ⌘ u

0
, A

0 ⌘ 0)

Definition 4.2. The expected payo↵ to the principal of a contract (v,A) 2 Sci(G) is

Pci(v,A,G) ⌘
ZZ �

y � �[v(y)]
�
f [y � ✓;A(�i)] dy dG(✓,�). (4.4)

As an example, the expected payo↵ of the no incentive contract is

Pci(v
0
, A

0
, G) (4.5)

=

ZZ
[z + ✓ � �[v0(y)]f(z; 0) dz dG(✓,�)

=

ZZ
zf(z; 0) dz dG(✓,�) +

ZZ
✓f(z; 0) dz dG(✓,�)�

ZZ
�(u0)f(z; 0) dz dG(✓,�)

(from definition, v0(y) = u

0)

=

Z
zf(z; 0) dz + 0 � �(u0)

ZZ
f(z; 0) dz dG(✓,�)

(because E[✓] = 0, and ✓, z independent)

=

Z
zf(z; 0) dz � �(u0) · 1

(integrating a density function over entire domain)

=P

0
.

It is interesting to note that the expected payo↵ from this contract does not vary with
G. Its value is always exactly the expected value of production given that the agent takes
the least costly action, 0, less the cost of providing the agent with their reservation utility,
�(u0).

4.3 Tournaments

Rather than o↵ering an individual contract (v,A) to each agent in which the agent’s com-
pensation is a function of the realized value of yi, the principal may opt to compensate
agents using a tournament payment scheme. In a tournament each agent’s compensation is
a function of the ordinal ranking of that agent’s output relative to the outputs of all other
agents. For a n-person tournament, let W = (W1,W2, . . . ,Wn) be a vector of the tour-
nament prizes, so the agent with the highest production receives Wn and the agent with
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the second-lowest production receives W2. Further, let w = (w1, w2, . . . , wn) be defined by
wi ⌘ u(Wi), 8i.

Define the jth order statistic of a statistical sample to be the jth-smallest value of the
sample. For instance, if our sample was {1, 3, 8,�4}, then the 1st order statistic would be
�4, and the 3rd order statistic would be 3.

Since each agent’s production is given by yi = zi + ✓, with ✓ common across all agents,
the rank order of the agents’ outputs is independent of the realization of (✓,�), and depends
only on the zi’s. Then, agent i wins prize wj if and only if zi is the jth-order statistic of
{z1, z2, . . . , zn}.

Definition 4.3. Let �j,n(z; a) be the density function of the jth order statistic in a sample
of size n drawn from the distribution F ( ; a):

�j,n(z; a) ⌘
n!

(n� j)!(j � 1)!
f(z; a)[F (z; a)]j�1[1� F (z; a)]n�j

.

We can verify the accuracy of the above definition as follows. In order for the jth order
statistic to be very near a given value, z, we need j � 1 values in the sample to be less
than z. These values can be selected from the n total values in

� n
j�1

�
ways, since their

order is unimportant, and the probability of each of those chosen j � 1 values being less
than z is F (z; a). We also need n � j of the remaining n � (j � 1) values to be greater
than z. There are

�n�(j�1)
n�j

�
ways to select these values, and each is greater than z with

probability [1 � F (z; a)]. Finally, the remaining value must be very near z, which occurs
with likelihood f(z; a). Combining all of the above, see see that

�j,n(z; a) =

✓
n

j � 1

◆
[F (z; a)]j�1

✓
n� (j � 1)

n� j

◆
[1� F (z; a)]n�j

f(z; a)

=
n!

(n� j)!(j � 1)!
f(z; a)[F (z; a)]j�1[1� F (z; a)]n�j

.

Definition 4.4. Given n and G, define the set of feasible tournaments

St(n,G) ⌘
�
(w, ā)

��
w 2 [0, B]n, ā 2 R+;

ā 2 argmax
a

1

n

nX

j=1

wj

Z
f(z; a)

f(z; ā)
�j,n(z; ā) dz � a; (4.6a)

1

n

nX

j=1

wj � ā � u

0
 
. (4.6b)

Here, the incentive compatibility constraint is (4.6a). The term
R f(z;a)

f(z:ā)�j,n(z; ā) dz is
the probability that the agent’s output is the jth order statistic in the tournament, given
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that every other tournament participant chooses action ā and the agent chooses action a.
The participation constraint is (4.6b), which requires that the agent’s expected utility from
participating in the tournament is at least as much as his reservation utility. Similarly to
the case for contracts, for any n and G we know St(n,G) must be nonempty because it
contains at least the “no incentive” tournament (w0 ⌘ (u0, . . . , u0), ā0 ⌘ 0).

Definition 4.5. Given n, G, and a tournament (w, ā) 2 St(n,G), let Pt(n,w, ā, G) be the
principal’s expected payo↵ per agent under tournament (w, ā)

Pt(n,w, ā, G) =

ZZ
yf(y � ✓; ā) dG(✓,�) dy � 1

n

nX

j=1

�(wj)

=

ZZ
(z � ✓)f(z; ā) dG(✓,�) dz � 1

n

nX

j=1

�(wj)

=

ZZ
zf(z; ā) dG(✓,�) dz �

ZZ
✓f(z; ā) dG(✓,�) dz � 1

n

nX

j=1

�(wj)

=

Z
zf(z; ā) dz � 1

n

nX

j=1

�(wj). (because E[✓] = 0, and ✓, z independent)

As an example, the principal’s expected payo↵ under the no incentive tournament is

Pt(n,w
0
, ā

0
, G) =

Z
zf(z; ā0) dz � 1

n

nX

j=1

�(w0
j ) (4.7)

=

Z
zf(z; 0)dz � �(u0)

= P

0
.

So the expected payo↵ to the principal under the no incentive tournament and the no
incentive contract are the same, both being equal to the expected production of an agent
taking action a = 0 minus the cost of providing the agent with exactly their reservation
utility, �(u0).

Note that neither the set of feasible tournaments St(n,G) nor the principal’s expected
payo↵ for a tournament Pt(n,w, ā, G) depend on the distribution G. In light of this, for
the rest of the paper we will write the set of feasible tournaments as St(n) and the expected
payo↵s as Pt(n,w, ā). In addition to simplifying the notation, the independence of the set
of feasible contracts and their payo↵s from the distribution G will be useful in a later proof.
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5 Comparison of Tournaments and Contracts

Whether an individual contract or a tournament should be used in a given situation depends
on the variance of the common shock ✓. An individual contract is based only on the
individual agent’s output, so the variance in payment under an individual contract comes
from common shock and from the idiosyncratic factors summarized in F ( ; a). A tournament
eliminates the variance in payment due to the common shock factor by using the rank
order of an agent’s output instead of their gross output to determine payment, but includes
variance from not only the individual agent’s idiosyncratic factors, but also the idiosyncratic
factors of all other agents. Since the agents are risk averse, it is optimal for the variance in
payment to be as small as possible ceteris paribus. So, if the variance of the common shock
is large enough relative to the variance of each agents’ idiosyncratic factors, it makes sense
that it would be optimal to use a tournament payment scheme to eliminate the variance
from the common shock. However, if the common shock is very small or non-existent,
it makes sense that it would be optimal to use a contract payment scheme so that each
agent’s payment doesn’t have variance introduced by other agents’ idiosyncratic factors.
We will first show that if there is no common error term between the agents, then for any
feasible tournament there is a feasible contract that dominates it.

Before we begin the theorem, we need to prove a lemma we will use in the theorem’s
proof.

Lemma 5.1. � is strictly increasing and convex

Let x, y 2 R+ be given, and let a = u(x), b = u(y). Since u is strictly increasing,

�(a) < �(b) () u[�(a)] < u[�(b)]

u[�(a)] < u[�(b)] () a < b, (� = u

�1)

so,
�(a) < �(b) () a < b

and � is strictly increasing.
Since u is concave,

8↵ > 0,� > 0,↵+ � = 1,

u(↵x+ �y) � ↵u(x) + �u(y).

Since � is strictly increasing,

�[u(↵x+ �y)] � �[↵u(x) + �u(y)]

↵x+ �y � �(↵a+ �b)

↵�(a) + ��(b) � �(↵a+ �b),

so � is convex. ⇤
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Theorem 5.2. Given G, F, n � 2, if ✓ = 0, i.e. if

Z

�2Rn
dG(✓,�) =

(
0 if ✓ < 0,

1 if ✓ � 0,
(5.8)

then for any feasible tournament (w, ā) 2 St(n), there is a feasible contract (v,A) 2
Sci(G), i = 1, . . . , n such that

Pci(v,A,G) � Pt(n,w, ā) i = 1, . . . , n,

with equality if and only if (w, ā) = [(u0, . . . , u0), 0], the no incentive tournament.

Given G, F, n � 2, (w, ā) 2 St(n), let (v⇤, A⇤) be a contract defined by

v

⇤(y) =
1

n

nX

j=1

wj
�j,n(y; ā)

f(y; ā)

=
1

n

nX

j=1

wj
n!

(n� j)!(j � 1)!
[F (z; ā)]j�1[1� F (z; ā)]n�j 8y,

A

⇤(�i) = ā 8�i.

This contract assigns (in utility terms) a pay-o↵ to an agent with production y the expected
value of the payo↵ that the agent would have received for producing y, given that all agents
choose action ā in the tournament (w, ā). I will now show that this contract satisfies the
contract incentive compatibility constraint (4.3a) and the contract participation constraint
(4.3b).

An agent facing contract (v⇤, A⇤) aims to maximize his expected utility given �i, and
so will choose an action A

⇤(�i) such that

A

⇤(�i) 2 argmax
a

Z
v

⇤(y)

Z
f(y � ✓; a) dG(✓,��i|�i) dy � a

= argmax
a

Z
v

⇤(y)f(y; a) dy � a,

where the simplification follows from (5.8) above. Substituting in the reward function for
v

⇤(y), we can see

= argmax
a

Z
1

n

nX

j=1

⇥
wj

�j,n(y; ā)

f(y; ā)

⇤
f(y; a) dy � a

= argmax
a

1

n

nX

j=1

wj

Z
f(y; a)

f(y; ā)
�j,n(y; ā) dy � a.

13



Since (w, ā), satisfies the tournament incentive compatibility constraint (4.6a), it follows
that ā 2 A

⇤(�i) and so (v⇤, A⇤) satisfies the contract incentive compatibility constraint
(4.3a).

To show our contract satisfies the participation constraint (4.3b) we examine the ex-
pected utility of each agent, which is

Z
v

⇤(y)

Z
f(y � ✓; ā) dG(✓,��i|�i) dy � ā

=

Z
v

⇤(y)f(y; ā) dy � ā (by (5.8))

=

Z h 1
n

nX

j=1

wj
�j,n(y; ā)

f(y; ā)

i
f(y; ā) dy � ā (by definition of v⇤)

=
1

n

nX

j=1

wj

Z
f(y; ā)

f(y; ā)
�j,n(y; ā) dy � ā (rearranging terms)

=
1

n

nX

j=1

wj

Z
�j,n(y; ā) dy � ā

=
1

n

nX

j=1

wj � ā (because �j,n( ; ā) is a density function)

� u

0
.

The inequality results from the assumption that the tournament (w, ā) satisfies the tour-
nament participation constraint (4.6b). Thus, the contract (v⇤, A⇤) satisfies the contract
participation constraint (4.3b).

All that remains is to show that our constructed contract weakly dominates the given
tournament. We will do so using Jensen’s Inequality and the fact that � = u

�1 is strictly
convex. The principal’s expected payo↵ from contract (v⇤, A⇤) is (from (4.4))
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Pci(v
⇤
, A

⇤
, G) =

ZZ
{y � �[v⇤(y)]}f [y � ✓;A⇤(�i)] dy dG(✓,�)

=

Z
{y � �[v⇤(y)]}f [y;A⇤(�i)] dy (by (5.8))

=

Z ⇢
y � �

h 1
n

nX

j=1

wj
�j,n(y; ā)

f(y; ā)

i�
f(y; ā) dy

=

Z
yf(y; ā) dy �

Z
�

h 1
n

nX

j=1

wj
�j,n(y; ā)

f(y; ā)

i
f(y; ā) dy

�
Z

yf(y; ā) dy �
Z h 1

n

nX

j=1

�(wj)
�j,n(y; ā)

f(y; ā)

i
f(y; ā) dy

(by Jensen’s Inequality and Lemma 5.1)

=

Z
yf(y; ā) dy � 1

n

nX

j=1

�[wj ]

Z
�j,n(y; ā) dy

(canceling f(y : ā) and rearranging)

=

Z
yf(y; ā) dy � 1

n

nX

j=1

�(wj)

(because �j,n(y; ā) is a density function)

= Pt(n,w, ā)

(by Definition 4.5)

) Pci(v
⇤
, A

⇤
, G) � Pt(n,w, ā).

The inequality is strict unless w = (w̄, . . . , w̄). If w = (w̄, . . . , w̄), then we must have
ā = 0 since agents have no incentive to take higher action levels because the first and last
place are paid the same. Further, unless w = (w̄, . . . , w̄) = (u0, . . . , u0), the no incentive
contract (v0, A0) dominates (w, ā). So, the inequality is strict unless (w, ā) is the no
incentive tournament. ⇤

In situations with no common error term, individual contracts should be preferred to
the use of tournaments. When the ✓ = 0 there isn’t any “noise” common to all agents,
so there isn’t any uncertainty about each agent’s level of e↵ort that can be removed by
comparing agents’ productions to one another. Instead of removing common “noise”, by
using a tournament we are introducing more variation because each agents’ compensation
has variance from not only their own zi distribution, but that of all other agents as well.
Since the agents are risk averse, in the absence of a shared error term this added volatility
leaves them worse o↵ under a tournament than they would be under a individual contract.

However, if there is a common error term and the distribution of that error term is
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su�ciently di↵use, we will show that it is optimal to use tournaments instead of contracts
to determine the pay received by each agent. Let {Gk}1k=1 = {G1, G2, . . .} be a sequence
such that for all k,

Gk has a density function gk, andZ

��i2Rn�1
gk(✓,��i|�i) d��i ⌘ gki(✓|�i) < 1/k 8 ✓,�i, i.

(5.9)

Here, (5.9), means that as k becomes large, the common shock is extremely variable, and
for each agent i the density function gki is very small everywhere. We will now show that
given a sequence {Gk}1k=1 as defined above, for su�ciently large k the optimal contract
is the “no incentive” contract (v0, A0), with payo↵ P

0. As shown above, the optimal
tournament does not depend on the distribution Gk, so the principal’s payo↵ under the
optimal tournament is at least P 0.

Theorem 5.3. Let n � 2, F , and {Gk}1k=1 satisfying (5.9) be given. If Fa(z; a) is of

bounded variation in z, and the bound, M , is uniform in a for a > 0, then there exists K

such that,

8 k > K, max
(w,ā)2St(n)

Pt(w, ā, n) � max
(v,A)2Sci(Gk)

Pci(v,A,Gk), i = 1, . . . , n.

with equality if and only if max(w,ā)2St(n) Pt(w, ā, n) = P

0
, the payo↵ from the no incentive

tournament.

Let {(vk, Ak)}1k=1 be a sequence of optimal contracts under the given conditions. We
know by (4.3a) that each agent’s choice of action must be a solution to the maximization
problem

argmax
a

Z
v(y)

Z
f(y � ✓; a)gki(✓|�i) d✓ dy � a.

Now, if for any agent i and any signal �i, we have Ak(�i) > 0, then we know that Ak(�i)
is an interior solution to the above maximization and the first derivative of the objective
function with respect to a is 0. So, if Ak(�i) > 0, then we must have

0 =
@

@a

 Z
v(y)

Z
f(y � ✓; a)gki(✓|�i) d✓ dy � a

�

)1 =
@

@a

 Z
v(y)

Z
f(y � ✓; a)gki(✓|�i) d✓ dy

�

)1 =

Z
v(y)

Z
fa(y � ✓; a)gki(✓|�i) d✓ dy
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However, we know that

lim
k!1

���
Z

fa(y � ✓; a)gki(✓|�i) d✓
���

 lim
k!1

1

k

Z
|fa(y � ✓; a)| d✓ (by (5.9))

 lim
k!1

M

k

(because Fa(z; a) is of bounded variation)

= 0.

Taking the above result and the fact that the range of v(y) is [0, B], it apparent that for
su�ciently large K,

1 >

Z
v(y)

Z
fa(y � ✓; a)gki(✓|�i) d✓ dy, 8 k > K.

Which implies that for k > K, Ak(�i) = 0 for all �i, and every contract in {(vk, Ak)}1k=K
is the no incentive contract (v0, A0). As shown in (4.5) and (4.7), the expected payo↵ of
the no incentive contract and the no incentive tournament are both equal to

P

0 =

Z
yf(y; 0) dy � �(u0).

Further, as noted at the end of Section 4.3, neither the optimal tournament nor the optimal
tournament’s payo↵ depend on G, so the payo↵ of the optimal tournament does not change
as k ! 1, even as the payo↵ of the optimal contract goes to P

0. So, we have

8 k > K, max
(w,ā)2St(n)

Pt(w, ā, n) � P

0 = max
(v,A)2Sci(Gk)

Pci(v,A,Gk), i = 1, . . . , n,

with equality if and only if max(w,ā)2St(n) Pt(w, ā, n) = P

0. ⇤
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