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A SWARM OF SALESMEN: ALGORITHMIC APPROACHES TO
MULTIAGENT MODELING

ALEXANDRE AMLIE-WOLF

Abstract. This honors thesis describes the algorithmic abstraction of a problem mod-
eling a swarm of Mars rovers, where many “agents” must together achieve a goal. The
algorithmic formulation of this problem is based on the traveling salesman problem
(TSP), and so in this thesis I offer a review of the mathematical technique of linear
programming in the context of its application to the TSP, an overview of some varia-
tions of the TSP and algorithms for approximating and solving them, and formulations
without solutions of two novel TSP variations which are useful for modeling the original
problem.

Oberlin College Computer Science Honors Thesis 2013
Supervisor: Tom Wexler

1. Introduction

In this day and age of space exploration, some of the most exciting scientific projects
being undertaken by humankind are those investigating Mars, the fourth planet from the
sun. NASA, the National Aeronautics and Space Administration of the United States of
America, has made full topographical data of Mars available to the public. These data
were recorded by the Mars Orbiter Laser Altimeter aboard the Mars Global Surveyor
over a period of four and a half years and 640 million elevation measurements as of
June 30, 2001. [31]. These measurements have an absolute accuracy of 13 meters with
respect to Mars’ center of mass, meaning that the global topography of Mars is known
to a greater accuracy than Earth’s continents (as of 1999) [32]. To date, Mars has only
been explored by single “rovers”; mobile robots that carry scientific equipment with
which to conduct tests on the planet’s surface, such as Curiosity, Spirit, Opportunity,
and Sojourner. An alternative approach to using single rovers is to apply ideas from
swarm intelligence by replacing the rover with a group (“swarm”) of less individually
powerful robots. Such a system would be more robust to failure and more modular,
both of which are important characteristics for exploring an environment as hostile as
the surface of Mars.

However, as opposed to a single robot which only has to worry about its own actions
(a difficult enough problem already), a group of robots such as this would have to be
made to cooperate in some sense; at the very least, they can’t get in each others way.

Date: May 8, 2013.
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2 ALEXANDRE AMLIE-WOLF

Given that each member of the group would be less capable than the single rover by
necessity, getting a group of robots such as this to accomplish anything meaningful
would be a difficult problem, especially in an environment like Mars, where any control
signals from Earth would take minutes to arrive. The goal of this honors project is to
investigate this problem using a variety of approaches, from AI/robotics planning to
algorithmic approaches (which form the bulk of the work done).

One approach taken was to use techniques from robotics and AI to try and model the
swarm of rovers as a decentralized group of learning agents; that is, instead of sending out
commands to each robot from some central source (i.e. Earth), the idea was to give the
group as a whole some goals to accomplish, and implement some learning and possibly
communication algorithm in each robot which would lead to emergent behavior that
would satisfy these goals without requiring central control. This approach was highly
influenced by principles of swarm intelligence, especially biologically inspired behavior
such as the self-organizing behavior of insect colonies [22] or the immune system [11].
However, as another goal of the project was to develop algorithms which were amenable
to precise theoretical analysis, this approach did not lend itself well to the overall goals
of the project. Many of these AI planning problems are computationally intractable
and often make overly simplifying assumptions which do not lend themselves well to
real world applications. Additionally, most swarm intelligence algorithms cannot be
theoretically guaranteed to converge on a solution, another aspect which we wanted in
our design.

Thus, the other approach taken in the thesis project, which was using algorithmic
and theoretical approaches to abstractions of this problem of multiagent cooperation,
became the bulk of the project. Instead of considering all the complex factors such as
being on Mars and the robotics control aspect of the problem, we abstracted away most
of them and formulated the problem in terms of the Traveling Salesman Problem (TSP).
This approach led us to investigate many variants of the TSP, and so the main thrust
of this thesis is to describe some of these variants and the solution or approximation
algorithms designed for them, as well as introduce some novel variants that could be used
to more precisely model our problem. Although I did not end up designing algorithms
and proving them for this problem, the thesis turned into more of a review on the TSP
and solution/approximation approaches to it, and as this is one of the most commonly
studied problems in algorithmic analysis, this turned out to be more than enough to
study over the course of the honors project. I will mention that we wanted to consider
polynomial time approximation algorithms, and so I leave out details of many algorithms
that use optimization techniques like branch and bound to find “good enough” solutions
that run in some “reasonable” amount of time.

The rest of this paper is structured as follows: In section 2, I describe our approach to
investigating the problem algorithmically. This includes an overview of linear program-
ming in section 2.1, a background of the general traveling salesman problem in section
2.2, and a categorization and description of some of the variants thereof in section 2.3.
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Then, in section 3 I briefly offer descriptions of two novel TSP variants and formulations
thereof. Finally, in section 4, I conclude with a discussion of the pros and cons of our
theoretical abstraction and possible next steps.

2. Theoretical Abstraction

I now give a brief review of linear programming, a review of the traveling salesman
problem, and an overview of some variants thereof.

2.1. Linear Programming.
Linear programming is a mathematical optimization technique which is used quite often
in approximation and solution algorithms for various problems. I give a brief review of
this topic because it is used in many algorithms that are used to approximate the TSP,
which lends itself well to such a formulation.

A linear programming (LP) problem is the problem of maximizing or minimizing an
objective function, which must be linear, subject to a finite number of linear constraints
[14]. For example, consider the objective function f(x1, x2, . . . , xn) =

∑n
j=1 cjxj for

some c1, c2, . . . , cn, and the linear inequalities a1x1 ≤ b1, a2x2 ≤ b2, . . ., anxn ≤ bn,
which are the constraints. Say we are trying to minimize f and we also want to make
sure that every xi must be ≥ 0. Then we can formulate this problem as the following
linear program:

minimize
n∑
j=1

cjxj(1)

subject to aixi ≤ bi (i = 1, 2, . . . , n)(2)

xi ≥ 0 (i = 1, 2, . . . , n)(3)

This is the standard form of an LP problem according to Chvátal, whose style I will
follow, where line 1 describes the objective function, and lines 2 and 3 describe the
linear constraints. There are various methods for solving LP problems, including the
simplex method and the ellipsoid method. The details of such solution methods are not
important to this thesis since I will only use them as a ’black box’ for solving LPs; further
details may be found in [14]. Some problems may also use what is called the integer
linear program (ILP) formulation, where all the variables in the objective function are
restricted to Z, the set of all integers. Unlike regular LPs, solving an ILP is NP-hard
[14]. However, such formulations are used for many of the algorithms and variants I will
discuss.

2.2. The Traveling Salesman Problem (TSP).
The traveling salesman problem is arguably the most well-known example of a com-

putationally intractable problem. In its most general form, it consists of a set of cities
and values representing the distances between each pair of cities, and the problem is
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to find the shortest path which visits each city exactly once and return to the starting
city, without reusing any edges [15]. Although the problem is technically solvable by
brute force (i.e. searching all possible sequences of cities), this takes factorial time in
the number of cities (O(n!)), meaning that for a modestly sized problem with 33 cities,
there are 131,565,418,466,846,765,083,609,006,080,000,000 distinct tours. Even using a
supercomputer such as the IBM Roadrunner Cluster at the United States Department of
Energy, this would take about 28 trillion years, even assuming each tour can be checked
with a single arithmetic operation [15]. Clearly, this is not a feasible approach.

As the TSP is one of the most intensely studied problems in combinatorial optimiza-
tion, there are a huge number of solution and approximation algorithms for it and its
variants. Therefore, by necessity, I limit this review to a subset of these algorithms and
variants, specifically those most directly related to linear programming and used for the
variants most relevant to our motivating problem of the swarm of Mars rovers. For in
depth treatments on the TSP, the reader is referred to [2, 30, 25].

First, consider the formulation of the TSP. The TSP can be modeled as a fully con-
nected graph, where the vertices represent cities and an edge has cost encoding the
’difficulty’ of traveling between its endpoint cities (I say difficulty here because some
formulations consider time, others consider distance, and others consider cost between
cities). Then the TSP on this graph is the problem of finding a Hamiltonian cycle of
shortest length [30]. In this form, there is no polynomial time approximation algorithm
for the traveling salesman problem with a bounded ratio unless P = NP ; in other
words, there is no way to guarantee even an approximately good solution to the general
problem.

However, research has been done on many sub-classes of the TSP, some of which
yield fixed-bound polynomial time approximation algorithms. For this thesis, I am
only concerned with the formulations called metric TSP, where edge costs satisfy the
triangle inequality (c(x, y) + c(y, z) ≥ c(x, z)∀x, y, z ∈ V ), and where the edges are
symmetric (i.e. we have an undirected graph). I now describe a simple approach to
approximating the metric TSP, which yields a 2-approximate solution, followed by a
description of the classic algorithm for metric TSP, Christofides algorithm, which yields
a better 1.5-approximate solution [13].

2-Approximation Algorithm. Given a undirected complete graph G = (V,E) represent-
ing a metric TSP instance, compute the minimum spanning tree T of G (which is
possible in linear time [18]), root T at some arbitrary vertex, and then traverse T in
preorder, listing this ordering of vertices without repeats as our TSP solution A. This
yields a 2-approximate solution to the metric TSP, i.e. cost(A) ≤ 2 ∗ cost(O) where O
is an optimal solution, and runs in polynomial time. The proof of this approximation
bound is in the appendix.

Christofides’ Algorithm. Given a TSP instance, a complete graph G = (V,E), compute
a minimum spanning tree T on G. Next, compute a perfect matching M with minimum
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weight on the set of vertices with odd degree in T , and combine M and T to make a
multigraph N . Finally, find an Eulerian circuit in N (a cycle in the graph which visits
every edge exactly once), and convert that into an Hamiltonian cycle, corresponding to
a TSP solution, by skipping visited nodes in the Eulerian circuit. This algorithm is well
known to be a 3/2-approximation for the TSP [13].

Held-Karp Lower Bound. Another important result in TSP approximation that I will
now describe is the family of lower bounds on the symmetric TSP first introduced
by Michael Held and Richard M. Karp in 1969 [26]. This is used as part of many
approximation algorithms, most relevantly the 2.5-approximation for the prize collecting
TSP that I will describe later in this thesis. This section is all based on reference [26].
In the interest of space, I leave out the proofs in this derivation; they can be found in
section A.2 of the appendix.

The Held-Karp lower bound uses observations about 1-trees, which are a slight vari-
ation on spanning trees, to find lower bounds on the cost of an optimum TSP tour on
a graph. A 1-tree is a graph with vertices {1, . . . , n} and consists of a tree on the set
{2, . . . , n} along with two distinct edges at vertex 1. 1-tree has a single cycle, which
contains vertex 1, and vertex 1 always has degree two; furthermore, while it is compu-
tationally hard to solve the TSP, a minimum-weight 1-tree can be found by finding a
minimum spanning tree on the vertices {2, . . . , n} (which can be solved in O(n) time
[18]), and then choosing the two lowest-weight edges at vertex 1. Then, every tour is a
1-tree, where vertex 1 is the ’depot’ or ’home’ city in TSP terms, and a 1-tree is a tour
if and only if each of its vertices has degree 2. Therefore, if a minimum-weight 1-tree
is a tour, it is the solution to the TSP. I now give the first lemma used to derive the
Held-Karp lower bound, as follows:

Lemma 1. Let π = (π1, π2, . . . , πn) be a real number vector. If C∗ is a minimum-weight
tour with respect to edge weights cij on a graph, then it is also a minimum-weight tour
with respect to edge weights cij + πi + πj, i.e. the original edge weights transformed by
π.

Unlike a tour, this edge weight transformation does affect the minimum spanning
1-tree. This leads us to the main idea of the Held-Karp lower bound, which is to search
for a vector π to transform the edge weights by such that the minimum weight 1-tree
with respect to weights cij + πi + πj is a tour. They introduce a ’gap’ function f(π)
which is defined as the difference between the cost of a minimum tour and the cost of a
minimum 1-tree with respect to the edge weights cij + πi + πj (transformed by π). The
cost of the minimum tour will always equal or exceed the cost of the minimum 1-tree,
since all vertices do not need to have degree 2 in a 1-tree; this is where the lower bound
on the cost of the tour comes from. Therefore, f(π) is a non-negative function. To
derive the best lower bound on the cost of a TSP tour, we want to find minπf(π). This
is because any transformation vector π will give us a lower bound, but we want that
lower bound to be as close as possible to the actual optimal TSP tour’s cost, so we want
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the smallest difference between the optimal 1-tree and the tour, which is measured by
f(π). Finding minπf(π) can be expressed as a linear program, which we will see later.

The actual family of Held-Karp lower bounds comes from relating this function to a
linear relaxation of this integer linear program representing the TSP: Deriving the Held-
Karp lower bound comes from relating the function f(π) to this integer linear program
encoding the TSP:

Program 1: minimize
∑

1≤i<j≤n

cijxij

subject to
∑
j>i

xij +
∑
j<i

xji = 2 for i = (1, . . . , n)(1) ∑
i,j∈S,i<j

xij ≤ |S| − 1 ∀S ⊂ {2, 3, . . . , n}(2)

0 ≤ xij ≤ 1 (1 ≤ i < j ≤ n)(3)

xij integer(4)

The optimal solutions of this integer LP correspond to optimal TSP tours with weights
cij [16, 17]; the tour corresponding to a feasible assignment of xij includes edge {i, j}
if and only if xij = 1. The constraints (1) ensure that each vertex in the tour has
degree 2, the constraints (2) are subtour elimination constraints, ensuring that no cycle
is formed in a (proper) subset of the vertices since the only cycle in a TSP must include
the depot, and the other constraints are on the variables in the ILP. I will now derive
the relationship between the linear relaxation of this ILP (where the variables are now
allowed to be real numbers instead of integers) and minimizing the function f(π).

Lemma 2. In program 1, it is possible to replace constraints (1) by∑
j>i xij +

∑
j<i xji = 2, i = 1, 2, . . . , n− 1, and

∑
1≤i<j≤n xij = n

This allows us to rewrite program 1 as

Program 1’: minimize
∑

1≤i<j≤n

cijxij

subject to
∑
j>i

xij +
∑
j<i

xji = 2, for i = (2, 3, . . . , n− 1)(1) ∑
j

x1j = 2(2) ∑
1≤i<j≤n

xij = n(3)

∑
i,j∈S,i<j

xij ≤ |S| − 1∀S ⊂ {2, 3, . . . , n}(4)

xij ≤ 1(5)
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xij ≥ 0(6)

xij integer(7)

Note that constraints (5) and (6) are now split up; this is to make the next step of
the derivation easier. To make a more compact representation of this linear program,
which is still the TSP ILP, define x and c to be

(
n
2

)
-sized vectors made up of all xij

and cij(1 ≤ i < j ≤ n), respectively. This allows us to replace the constraints (1)
with Ax = b where A is a matrix defined to represent the summation in the constraints
and b is a vector made up entirely of 2s, and the constraints (2), (3), (4), and (5) with
A′x ≤ b′, where A′ and b′ are similarly defined to represent the constraints (although
these constructions are slightly more complex). This allows us to rewrite the program
1’ as the more compact

minx{cx|Ax = b, A′x ≤ b′, x ≥ 0, x integer}
I now take advantage of the following theorem relating 1-trees to extreme points of

a polyhedron. Details on its derivation are found in section 6 of [26], and involve a
theorem about matroids, a type of structure, which yields this theorem as a special
case.

Theorem 3. Let T 1, T 2, . . . , T k, . . . , T q be the 1-trees defined on the vertex set {1, 2, . . . , n}.
For each T k, define an

(
n
2

)
-vector called (ekij) as:

(ekij) =

{
1 if (i, j) is an edge of T k

0 otherwise

Then the extreme points of the polyhedron A′x ≤ b′, x ≥ 0 are the points (ekij).

Using this theorem, the problem of finding a minimum 1-tree with respect to some(
n
2

)
-sized weights vector c can be represented as a linear program of the form

minx{cx|A′x ≤ b′, x ≥ 0}
More relevantly to this derivation, the problem of finding a minimum 1-tree with respect
to the transformed weights cij + πi + πj can be represented as

minx{cx+ πAx|A′x ≤ b′, x ≥ 0}
Recalling the gap function f(π) that measures the difference between the weight of a

minimum (TSP) tour and a minimum 1-tree with respect to the weights cij + πi + πj, it
is possible to represent f(π) as follows (remember that b is a vector of all 2s):

f(π) = minx{cx|Ax = b, A′x ≤ b′, x ≥ 0, x integer}+ πb−minx{cx+ πAx|A′x ≤ b′, x ≥ 0}
= minx{cx|Ax = b, A′x ≤ b′, x ≥ 0, x integer} −minx{cx+ π(Ax− b)|A′x ≤ b′, x ≥ 0}

Defining a function w(π) which represents the weight of the minimum 1-tree with
respect to the weights cij + πi + πj; using theorem 3, this can be written as

w(π) = minx{cx+ π(Ax− b)|A′x ≤ b′, x ≥ 0}
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Then, minimizing f(π) is equivalent to maximizing w(π). The following theorem relates
the maximization of w(π) back to program 1, the integer LP for the TSP:

Theorem 4. maxπw(π) = v, where

v = minx{cx|Ax = b, A′x ≤ b′, x ≥ 0},

I.e. v is the linear relaxation of program 1.

This concludes the formal derivation of the Held-Karp lower bounds on the length of
the traveling salesman. In summary, I have shown that the linear relaxation of program
1 can be used to derive a lower bound on the length of the optimal TSP tour, and
furthermore that it is possible to derive a ’maximum’ lower bound. I will use this fact in
some of the approximation techniques for variations on the TSP, and this lower bound
is widely used.

2.3. Variants on the TSP.

There are many variants on the classical TSP that can be used to model more specific
problems and may lend themselves to different solution and approximation techniques.
In this section I present a categorization of some of these variants, descriptions of each
variant, and the algorithms used to approximate solutions to each variant.

Although this is a partial list of variants, these are some of the characteristics that
could prove useful in categorizing variants I did not describe. There may also be other
possible values for these characteristics (such as uniform penalties), but I left out de-
scriptions of those that did not come up in the variants I describe here. I categorized
each variant using 4 characteristics:

# of Tours: Whether there is a single salesman, or if multiple salesmen may be sent
on tours.

Penalties: Infinite if no vertex may be missed (as in the classical TSP), or non-
uniform punishment for missing any vertex if it is possible to visit a subset of vertices
(i.e. each vertex has a specific cost associated with missing it).

Time Windows: Whether or not there are time windows on each vertex; that is, is
there a time window in which a vertex must be visited?

Objective Function: This is the function describing how “good” any one solution
is. In these variants, this is either minimizing the edge costs on the tour, or minimizing
the edge costs on the tour minus the cost for missed vertices.

See table 1 for the overview of the variants I will now discuss in more detail, including
their formulations and solution methods. These variants are the prize collecting traveling
salesman (PCTSP) [8, 3, 5, 20], the multiple traveling salesman problem (mTSP) [6, 37,
9, 10, 12, 28, 1, 19, 23], and the time constrained traveling salesman problem (TCTSP)
[4, 34].



A SWARM OF SALESMEN: ALGORITHMIC APPROACHES TO MULTIAGENT MODELING 9

Variant # of Tours Penalties Time Windows Objective Function Sources
TSP 1 Infinite None Minimize Edge Cost [13, 15, 2,

30, 25, 26,
16, 17]

PCTSP 1 Non-uniform None Minimize Edge Cost-
Missed Prizes

[8, 3, 5, 20]

mTSP m Infinite None Minimize Edge Cost [6, 37, 9,
10, 12, 28,
1, 19, 23]

TCTSP 1 Infinite Yes Minimize Edge Cost [4, 34]
Table 1. List of Known Variants

2.3.1. Prize Collecting Traveling Salesman Problem. In the prize collecting traveling
salesman problem (PCTSP), an instance of the problem consists of a complete undi-
rected graph G = (V,E), where each edge {i, j} ∈ E has an associated cost c{i,j} and
each vertex i ∈ V has a non-negative penalty πi [5]. The goal is to generate a tour that
visits some subset of the vertices such that the sum of the cost of the edges of the tour
plus the sum of the penalties of all the vertices not in the tour is minimized. In the most
general version first introduced by Balas in 1989 [5], there is another constraint, which
is that the rewards of the visited vertices must meet or exceed a quota. This problem
generalizes the quota TSP, which is when the salesman must visit a certain number of
cities but is not punished for those that are missed, as well as the penalty TSP, where
there is no required quota of cities to be visited, but there are penalties for missing cities
[3]. The PCTSP is one of the more well-studied TSP variants, and so I will go over only
a subset of algorithms related to it, giving citations for further information.

Formulation: I will focus on a specific formulation, the one that yields the 2.5-
approximation algorithm given by Bienstock et al. in 1991 [8]. This is the same as
the general PCTSP formulation except without a quota requirement, and with the
assumption that the edge costs satisfy the triangle inequality, i.e. c{i,j} ≤ c{i,k}+c{k,j} for
all i, j, k ∈ V (so it’s a metric PCTSP). Although there have been many advances since
then, including a 2-approximation using primal dual techniques from linear programming
[20] that is the basis of most more recent approaches to approximating the PCTSP that
improve the bound even further [3], I will focus on this formulation and algorithm as
an example of an approximation algorithm that is relatively simple to understand yet
powerful enough to yield a theoretically guaranteed bound on the optimal solution.

Solution and Approximation Algorithms: I now present the 2.5-approximation
for the PCTSP. Again in the interest of space, I leave the main approximation proof to
the appendix, in section A.3.

In this formulation, define ZH as the cost of the solution produced by the heuristic
H. Then define Z∗ as the optimal solution to the PCTSP, and more specifically, Z∗(j)
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as the optimal solution to the PCTSP when vertex j must be in the tour. Then we have
Z∗ = min{

∑
i∈V πi,minj∈V {Z∗(j)}}; either we visit none of the vertices and pay all the

costs, or we take the best tour we can find, whichever is cheaper.
To formulate this as an LP, define the variables yi as one if vertex i is in the tour and

0 otherwise, and xe as one if edge e is used in the tour and zero otherwise. Also define
δ(S) as the set of edges crossing S, for any S ⊆ V . This allows us to define the LP for
Z∗(j), program PC1(j):

Z∗(j) = minimize
∑
e∈E

cexe +
∑
i∈V

πi(1− yi)

subject to
∑

e∈δ({i})

xe = 2yi∀i ∈ V(1)

∑
e∈δ(S)

xe ≥ 2yi∀i ∈ V, S ⊂ V such that |S ∩ {i, j}| = 1(2)

0 ≤ xe ≤ 1 and integer(3)

0 ≤ yi ≤ 1 and integer ∀i 6= j(4)

yj = 1(5)

The basic idea of this approximation algorithm is to solve the LP relaxation of program
PC1(j) for each vertex j (using the ellipsoid method, which I mentioned in section 2.1),
transform each of those solutions into a feasible solution to the PCTSP, constructing
|V | feasible solutions, and then choose the best of those, or the solution in which no
vertex is visited.

Before I derive the algorithm, I must make some preliminary definitions, theorems,
and lemmas that will be used in the main algorithm:

Define a program PC2 to get the Held-Karp lower bound on the TSP (as described
earlier), which is formulated as:

ZHK = minimize
∑
e∈E

cexe

subject to
∑
e∈δ(S)

xe ≥ 2 ∀S ⊂ V, S 6= ∅(1)

∑
e∈δ({i})

xe = 2 ∀i ∈ V(2)

0 ≤ xe(3)

(Note that ZHK 6= ZHK , i.e. this isn’t describing a heuristic solution, just the Held-Karp
lower bound).

The following theorem comes from [36, 29]:
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Theorem 5.

ZHK/L(V ) ≥ ZHK/L
C(V ) ≥ 2/3

Where L(V ) is the length of the optimal tour through the vertices V and LC(V ) is the
length of the tour found by Christofides’ algorithm through the vertices V .

Finally, we have a lemma about PC2 that follows from a lemma from [21]:

Lemma 6. In problem PC2, one can ignore constraint 2 without changing the value of
the lower bound.

I refer the reader to [8, 21] for details of this proof.
Now I am ready to begin the description of the approximation algorithm itself:
If we use the ellipsoid method, we can solve the linear relaxation of program PC1(j)

for each j ∈ V . Let x̄ and ȳ be an optimal solution to the LP relaxation of PC1(j) for
some j found in this way. Define new vectors x̂ and ŷ according to equation 1:

x̂e = (5/3)x̄e ∀e ∈ E

ŷi =

{
1 if ȳi ≥ (3/5)

0 otherwise
∀i ∈ V

From the definition of ŷi, derive equation 2: 1− ŷi ≤ (5/2)(1− ȳi) ∀i ∈ V . Now define
T ⊆ V as T = {i ∈ V |ŷi = 1}, and construct a tour through those vertices using
Christofides’ algorithm. This is the tour produced by our algorithm, when j must be in
the tour. We call this the modified linear program (MLP) heuristic on vertex j, denoted
by ZMLP (j). Then, this solution pays penalty costs for all vertices not in T , so we have

ZMLP (j) = LC(T ) +
∑
i∈V

πi(1− ŷi)

for the tour where j ∈ V is in the tour. Then, the MLP heuristic, denoted as ZMLP ,
chooses the best solution over all vertices or the one where no vertices are taken; that
is,

ZMLP = min{
∑
i∈V

πi,minj∈V {ZMLP (j)}}

Theorem 7. ZMLP/Z∗ ≤ 2.5.

Therefore, I have described a 2.5-approximation algorithm for the PCTSP which
relaxes the integer constraints on an integer LP and then “rounds” those fractional
solutions to an integer solution and argues that those integer solutions are close to the
optimal solution. This is useful as a good example of an approach that is useful for
approximately solving problems that are otherwise intractable.
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2.3.2. Multiple Traveling Salesman Problem. The multiple traveling salesman problem
(mTSP) is a less well-studied variant of the TSP [6], where the main difference is that
there can be more than one salesman/tour in the solution. I now briefly review a
formulation for this problem and approaches to solving or approximating this problem.

Formulation: The mTSP can be defined similarly to the TSP: given a graph G =
(V,E) where the vertices represent cities and the edges have costs representing the
’difficulty’ of traveling between cities, the goal is to make a tour of the cities and minimize
the cost of the edges on the tour. The difference in the mTSP is that there are now m
salesman which can all make tours, all starting from some ’home’ or ’depot’ node, and
so the goal is to find m tours, one for each salesman, where each non-depot node still is
only visited once and the total cost of edges on every tour is minimized. This problem
has real world applications that the TSP cannot necessarily be directly used for, such
as mission planning for autonomous mobile robots [37, 9, 10]. It is also worth noting
that the TSP is a special case of the mTSP where m = 1, so any solution techniques for
mTSP can be used for TSP.

There are many integer linear programming formulations for the mTSP, including
assignment-based formulations, which seem to be the norm [6], but also including a k-
degree center tree-based formulation, and a flow-based formulation, both from [12] and
based on the vehicle routing problem. I will focus on the assignment-based formulation,
as it is the most closely related to the types of problems and solution methods I describe
in this thesis.

To describe the assignment-based formulation, define the following variable:

xi,j =

{
1 if arc (i, j) is taken on any tour

0 otherwise

Then one general formulation is as follows:

minimize
∑

1≤i<j≤n

cijxij

subject to
n∑
j=2

x1j = m(1)

n∑
j=2

xj1 = m(2) ∑
1≤i<j≤n

xij = 2(3)

subtour elimination constraints(4)

xij ∈ {0, 1}∀{i, j} ∈ E(5)
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The only difference from the normal ILP for the TSP is that the first two constraints
now stipulate that m tours must leave from and end at the ’depot’ node. The “subtour
elimination constraints” are similar to those in the other LP formulations we have seen;
these constraints make sure that no cycles exist in the graph except for the main one(s)
which include the ’depot’ node. Many different ones have been proposed in the mTSP
literature, but these are outside the scope of this thesis so I leave them out.

Solution and Approximation Approaches: There have been three main ap-
proaches to solving the mTSP: exact algorithms, heuristic approaches, and transforma-
tions to the TSP. Since these are not closely related to the goal of this thesis (finding
provable approximations), I leave out most details of these approaches and refer to the
review paper [6] for further details. Although this variant did not offer much in the way
of useful algorithms given the goal of this thesis, it is a good example of a variant for
which other approaches have been tested and provable approximations have not been
studied or found. I now present a brief overview of the various solution techniques with
some citations:

Exact Solutions: Integer linear programming formulations, cutting plane techniques
(relaxing some of the constraints on the problem similarly to the PCTSP algorithm de-
scribed earlier) [28] and branch and bound optimization techniques (where lower bounds
on the solution are obtained, similarly to the Held-Karp lower bound described earlier)
[1, 19, 23]. These are concerned with optimizing the ’brute-force’ search for exact solu-
tions, but do not necessarily come within a provable bound of the optimal solution.

Heuristics: Evolutionary algorithms, simulated annealing [33], Tabu search, genetic
algorithms [38], and neural networks [35]. These use heuristic approaches to solve the
problem but cannot be theoretically guaranteed to converge or find any bounded near-
optimal solution.

Transformations to TSP: Asymmetric mTSP to asymmetric TSP [7], symmetric
mTSP to symmetric TSP [27], and multidepot mTSP to TSP [24]. These transform
the mTSP to the regular TSP, which may provide inspiration for our multi-agent prob-
lem, but these algorithms only deal with the transformation to TSP, not necessarily
solving it thereafter.

2.3.3. Time Constrained Traveling Salesman Problem. This section describes the time
constrained traveling salesman problem (TCTSP). This is another example of a variant
for which only exact algorithms are known (with ‘good enough’ running times obtained
by optimization techniques) other than for special cases which are irrelevant to this
thesis, and so I will again not go into too much detail on these solutions.

Similarly to the TSP, an instance of the TCTSP consists of a graph where the vertices
represent cities and the edges between vertices have costs representing the time required
to travel between each city. The goal is to compute a (single salesman) tour for that visits
every city exactly once such that the cost of the tour is minimized, with the additional
constraint that the visit to each city must be made within specified time windows. If
ti is when the salesman visits city i, then there is a constraint such that li ≤ ti ≤ ui,
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where li and ui are the lower and upper time bounds for that city, respectively [4]. Note
that this formulation describes ’hard’ time bounds, i.e. it is not possible to miss the
time windows. Some other variants may use ’soft’ time windows, where the salesman
can pay some fee to visit a city outside of the time window.

Formulation: I describe the formulation from Edward Baker, 1982 [4]. Instead of
the typical binary variable xij, define a single variable ti to be the time that city i is
visited; this necessitates an additional variable tn+1 to describe when the home city is
visited again at the end of the tour. Then, D is the nonnegative time matrix, where dij
is the time to travel from city i to city j. Again this is the metric TSP, where the time
costs satisfy the triangle inequality. Then the problem can be described as the following
LP:

Minimize tn+1 − t1
ti − t1 ≥ d1i i = 2, 3, . . . , n(1)

|ti − tj| ≥ dij i = 3, 4, . . . , n, 2 ≤ j < i(2)

tn+1 − ti ≥ di1 i = 2, 3, . . . , n(3)

ti ≥ 0∀i(4)

li ≤ ti ≤ ui i = 2, 3, . . . , n(5)

Clearly, constraints 1-4 define a traveling salesman problem. See [4] for a more formal
proof, but constraints 1 and 3 guarantee that the smallest and largest ti values corre-
spond to the departure from and return to the depot city, respectively, and constraints
2 guarantee that each city is assigned a unique visitation time and the difference be-
tween any two cities visitation times is at least the distance between those cities. Then,
constraints 5 are the only ones unique to the TCTSP formulation.

Solution and Approximation Approaches: Since introducing time constraints to
the TSP only makes it harder in its most general form, many approaches have been to
try and solve the problem ’practically’; that is, using techniques like branch and bound
algorithms to solve it optimally in some ’reasonable’ amount of time. It is sometimes
possible to solve using theoretically guaranteed polynomial time algorithms when it is
restricted to special cases, such as when the cities are placed along a straight line [34].
However, since this thesis is concerned with the specific multi-agent learning problem
described earlier, where nothing may be assumed about where the ’cities’ (or whatever
the rovers need to visit) are, these special cases are irrelevant to the thesis. Unfor-
tunately, then, this is another example of a variant which does not have theoretically
guaranteed approximation algorithms, and so does not inform the type of analysis this
thesis deals with.

3. Novel TSP Variants

In this section, I describe some ideas for novel TSP formulations that may be used to
model our original swarm of Mars rover problem. These variations are interesting for
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thinking about modeling the original problem, and the obvious next step in this line of
research would be to delve more deeply into solution algorithms for them.

I now present brief descriptions of each variant, along with potential formulations.

3.0.4. Quota Multiple Prize Collecting Traveling Salesman Problem. The quota multi-
ple prize collecting traveling salesman problem (qmPCTSP) generalizes the PCTSP by
allowing for multiple tours, and also adds a quota, as in the quota PCTSP formulation.
This quota reflects a minimum amount of prize that must be collected by the m tours.
Formulation: Since there now are multiple traveling salesmen, define new variables:

xe,k =

{
1 if agent k takes edge e

0 otherwise

and

yi,k =

{
1 if agent k visits vertex i

0 otherwise

Call M our set of m agents and q the quota. Then an LP formulation for this problem
is as follows:

minimize
∑
k∈M

{
∑
e∈E

cexe,k +
∑
i∈V

πi(1− yi,k)}

subject to
∑

e∈δ({i})

xe,k = 2yi,k ∀i ∈ V, k ∈M(1)

∑
e∈δ(S)

xe,k ≥ 2yi,k ∀i ∈ V, k ∈M,S ⊂ V such that |S ∩ {i, j}| = 1(2)

∑
k∈M

∑
i∈V

πiyi,k ≥ q(3)

0 ≤
∑
k∈M

xe,k ≤ 1(4)

0 ≤
∑
k∈M

yi,k ≤ 1(5)

Constraints 1 and 2 are the same as in the normal PCTSP formulation except they
apply to all m agents, constraint 3 defines the quota requirement, and constraints 4 and
5 guarantee that each vertex and edge is visited by at most one tour.

3.0.5. Budget Multiple Prize Collecting Traveling Salesman Problem. The budget multi-
ple prize collecting traveling salesman problem (bmPCTSP) is similar to the qmPCTSP
except that instead of a quota on the amount of prize that must be collected, there is a
budget for each agent (or a total budget) describing the maximum allowable cost of the
tour.
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Formulation: This formulation is similar to the qmPCTSP formulation except that
instead of a quota q, I define a budget bk for each agent k representing what the most
that agent can “pay” to take its tour is. To describe a total budget, we could define b,
where

∑
k∈M bk = b, but for the motivating problem of this thesis we would probably

want to define individual budgets for each agent.

minimize
∑
k∈M

{
∑
e∈E

cexe,k +
∑
i∈V

πi(1− yi,k)}

subject to
∑

e∈δ({i})

xe,k = 2yi,k ∀i ∈ V, k ∈M(1)

∑
e∈δ(S)

xe,k ≥ 2yi,k ∀i ∈ V, k ∈M,S ⊂ V such that |S ∩ {i, j}| = 1(2)

∑
e∈E

cexe,k ≤ bk ∀k ∈M(3)

0 ≤
∑
k∈M

xe,k ≤ 1(4)

0 ≤
∑
k∈M

yi,k ≤ 1(5)

Constraints 1 and 2 are the same as the normal PCTSP formulation, constraint 3
defines the budget requirement, and constraints 4 and 5 guarantee that each vertex and
edge is visited by at most one tour.

4. Conclusion

In this thesis, I have presented the traveling salesman problem and variants thereof
as a feasible method for modeling and investigating the original problem I described,
the problem of getting a “swarm” of Mars rovers to cooperate in some sense. Although
I did not reach the stage of designing algorithms to solve the algorithmic abstractions
I defined, let alone converting those algorithms into an actual plan for the “swarm”
that could be tested in simulation due to time constraints, I believe that pursuing
this algorithmic approach would be a feasible and interesting way to investigate such
a problem. The novel variants I described could lead to interesting results both in
simulating a “swarm” as described and from the algorithmic standpoint of designing
algorithms to solve such problems, and such an approach could easily be translated into
the original problem. For example, the “budget” in the bmPCTSP could represent the
amount of power each rover in the “swarm” is given, and the prizes on each vertex could
represent the scientific utility of various locations in the environment being explored;
then, a solution to the bmPCTSP could be used to make a plan for where each robot
would travel in their explorations. Although I did not get to develop any novel solutions,
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this honors thesis was worthwhile in getting me to that point, and clearly the next step
would be to design some algorithms to solve the novel variants I presented and eventually
apply those algorithms to the real world problem.
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Appendix A. Theorem Proofs from Derivations

A.1. Proof of the 2-Approximate TSP Algorithm. Note: this proof is based pri-
marily on the proof from the approximation algorithms handout from CSCI 280 in
Spring 2012, taught by Alexa Sharp. I tried to change some of the wording so that it
wasn’t exactly the same, but I realize it is very similar. There is no plagiarism intended,
I just wanted to include this proof for completeness.

Lemma 8. The algorithm produces an ordering of the vertices corresponding to a feasible
TSP tour.

Proof. Since we traverse the minimum spanning tree in preorder, clearly we traverse
every vertex; then, we remove every repeated vertex from the ordering and so we have
listed every vertex exactly once in our ordering. �

Lemma 9. The solution produced by the algorithm is 2-approximate; i.e. if A is our
solution and O is an optimal solution, then cost(A) ≤ 2cost(O).

Proof. First we claim that the cost of the optimal ordering O = vo1 , vo2 , . . . , von is
greater than or equal to the cost of T , our minimum spanning tree. We can see this by
making another spanning tree T ′ by removing the last edge from O; since all edges have
positive cost, cost(T ′) < cost(O), and since T is a minimum spanning tree, we have
cost(T ) ≤ cost(T ′) by definition, so cost(T ) < cost(O).

Now we claim that the cost of our solution A is at most twice the cost of T . If we
define W to be the full walk around T in preorder, clearly cost(W ) = 2 ∗ cost(T ) since
W traverses every edge twice by definition of a full walk. Our solution ordering A is
a subsequence of W , since it is W without the repeated vertices. Because we have
a metric TSP formulation, whenever A skips repeats, it is taking a ’shortcut’. That
is, if A skips over the repeats between two vertices x and z, it pays c(x, z) instead of
the sum of the cost of all the edges between x and z, and since the triangle inequality
says c(x, x′) + c(x′, z) ≥ c(x, z) for all the neighbors x′ that A would have to go over,
taking this ’shortcut’ is at least as cheap as taking all the edges. Therefore, we have
cost(A) ≤ cost(W ) = 2 ∗ cost(T ).

Combining these two claims, we have cost(A) ≤ 2 ∗ cost(T ) ≤ 2 ∗ cost(O), so A is a
2-approximation for metric TSP. �

A.2. Held Karp with Proofs.

Lemma 10. Let π = (π1, π2, . . . , πn) be a real number vector. If C∗ is a minimum-
weight tour with respect to edge weights cij on a graph, then it is also a minimum-weight
tour with respect to edge weights cij + πi + πj, i.e. the original edge weights transformed
by π.

Proof. If we have any tour C, each vertex in the graph is included in two edges of
C, by the definition of a tour. A tour with respect to the original weights cij has
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weight
∑
{i,j}∈C cij and a tour with respect to the modified weights cij + πi + πj has

weight
∑
{i,j}(cij + πi + πj). Since each vertex i is included in two edges of C, the

difference between these tour weights is 2
∑n

i πi, and so changing the weights on the
graph affects any generic tour C by the same amount and so a minimum-weight tour
with respect to edge weights cij is also a minimum-weight tour with respect to edge
weights cij + πi + πj. �

Lemma 11. In program 1, it is possible to replace constraints (1) by∑
j>i xij +

∑
j<i xji = 2, i = 1, 2, . . . , n− 1, and

∑
1≤i<j≤n xij = n

Proof.∑
1≤i<j≤n

xij = (1/2)
n∑
i=1

(
∑
j>i

xij +
∑
j<i

xij) by definition

= (1/2)
n−1∑
i=1

(
∑
j>i

xij +
∑
j<i

xij) + (1/2)
∑
j

xjn by sum expansion

= (1/2)
n−1∑
i=1

2 + (1/2)
∑
j

xjn by using the first property replacement in the lemma

= n− 1 + (1/2)
∑
j

xjn by sum properties

So given the other constraints, it is clear that
∑

i≤i<j≤n xij = n if and only if
∑

j xjn = 2

(as can be seen in the second to last step of the derivation above). This is sort of a
strange proof since it uses part of it in its own proof, but the point is that one part of
the lemma implies the other and so if we can use

∑
1≤i<j≤n xij = n then we can use∑

j>i xij +
∑

j<i xji = 2, i = 1, 2, . . . , n− 1. �

Theorem 12. Let T 1, T 2, . . . , T k, . . . , T q be the 1-trees defined on the vertex set {1, 2, . . . , n}.
For each T k, define an

(
n
2

)
-vector called (ekij) as:

(ekij) =

{
1 if (i, j) is an edge of T k

0 otherwise

Then the extreme points of the polyhedron A′x ≤ b′, x ≥ 0 are the points (ekij).

Proof. Here I will only prove that the points (ekij) are in the polyhedron A′x ≤ b′, x ≥ 0,
i.e. that if we assume that the theorem holds (see section 6 of [26] for the derivation of
this theorem, which is a special case of another matroid theorem), I will show how it
applies to our derivation. I list the constraints represented in the program represented
by the polyhedron A′x ≤ b′, x ≥ 0 and how the points (ekij) satisfy them:

2. Vertex 1 always has degree 2 in a 1-tree.
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3. Every 1-tree has n edges by definition.
4. The only cycle in a 1-tree contains vertex 1.
5. Trivially.

�

Theorem 13. maxπw(π) = v, where

v = minx{cx|Ax = b, A′x ≤ b′, x ≥ 0},
I.e. v is the linear relaxation of program 1.

Proof. We have defined v as the linear relaxation of program 1, and we want to show
that it is equivalent to maxπw(π). If we dualize v, we obtain

v = maxu,u′{−ub− u′b′|uA+ u′A′ ≥ −c, u′ ≥ 0}
v = maxu[maxu′{−ub− u′b′|uA+ u′A′ ≥ −c, u′ ≥ 0}] by maximization properties

If we then dualize the inner maximization problem considering u to be held constant,
we get

v = maxu[minx{cx+ u(Ax− b)|A′x ≤ b′, x ≥ 0}]
We have already seen that the inner part of this equation, with u = π is the same as
w(π), and so we have shown that v = maxπw(π). �

A.3. 2.5-Approximation Bound for PCTSP.

Theorem 14. ZMLP/Z∗ ≤ 2.5.

Proof. We can just show that ZMLP (j)/Z∗(j) ≤ 2.5 for every j ∈ V . To do this, we
define a program PC3 which yields the Held-Karp lower bound on the subset of vertices
T :

minimize
∑
e∈E

cexe

subject to
∑

e∈δ({S})

xe ≥ 2 ∀S ⊂ V s.t. T ∩ S 6= ∅, T ∩ (V \ S) 6= ∅(1)

∑
e∈δ({i})

xe = 2 ∀i ∈ T(2)

∑
e∈δ({i})

xe = 0 ∀i /∈ T(3)

xe ≥ 0 ∀e ∈ E(4)

By applying lemma 6, we see that the solution to program PC3 is unchanged if we
remove constraints 2 and 3. Let problem PC4 be PC3 without those constraints, and
denote its optimal solution as x́. Then by Theorem 5, we have that

LC(T ) ≤ 3/2
∑
e∈E

cex́e
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(equation 3). We now show that our solution x̂ is feasible as a solution for PC4. Clearly
it satisfies constraint 4, and so we just need to show it satisfies constraints 1. Consider
any S ⊂ V such that i ∈ T ∩ S and j ∈ T \ S. By the feasibility of x̂ in program PC1

and the definition of T , using constraint 2 from PC1 and equation 1, we have that∑
e∈δ(S)

x̂e ≥ 2ŷi ≥ 2(3/5) = (6/5) ∀S ⊂ V such that T ∩ S 6= ∅, T ∩ (V \ S) 6= ∅

Therefore, for any S ⊂ V satisfying those constraints, we have∑
e∈δ(S)

x̂e = (5/3)
∑
e∈δ(S)

x̄e ≥ 2

and so x̂ satisfies constraint 1 from PC4. Also, since x́ is optimal, we have equation 4:∑
e∈E cex̂e ≥

∑
e∈E cex́e. Now we can prove our statement:

ZMLP (j) = LC(T ) +
∑
i∈V

πi(1− ŷ1)

≤ 3/2
∑
e∈E

cex́e +
∑
i∈V

πi(1− ŷi) from equation 3

≤ 3/2
∑
e∈E

cex̂e +
∑
i∈V

πi(1− ŷi) from equation 4

≤ 3/2
∑
e∈E

ce(5/3)x̄e + (5/2)
∑
i∈V

πi(1− ȳi) from equations 1, 2

= (5/2){
∑
e∈E

cex̄e +
∑
i∈V

πi(1− ȳi)} by algebra

≤ (5/2)Z∗(j)
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