
Oberlin Oberlin 

Digital Commons at Oberlin Digital Commons at Oberlin 

Honors Papers Student Work 

2015 

Pillars and Buttes: A Petrologic Comparison of Modern and Pillars and Buttes: A Petrologic Comparison of Modern and 

Ancient Hydrocarbon Seep Rock Ancient Hydrocarbon Seep Rock 

Erica C. Morelli 
Oberlin College 

Follow this and additional works at: https://digitalcommons.oberlin.edu/honors 

 Part of the Geology Commons 

Repository Citation Repository Citation 
Morelli, Erica C., "Pillars and Buttes: A Petrologic Comparison of Modern and Ancient Hydrocarbon Seep 
Rock" (2015). Honors Papers. 265. 
https://digitalcommons.oberlin.edu/honors/265 

This Thesis - Open Access is brought to you for free and open access by the Student Work at Digital Commons at 
Oberlin. It has been accepted for inclusion in Honors Papers by an authorized administrator of Digital Commons at 
Oberlin. For more information, please contact megan.mitchell@oberlin.edu. 

https://digitalcommons.oberlin.edu/
https://digitalcommons.oberlin.edu/honors
https://digitalcommons.oberlin.edu/students
https://digitalcommons.oberlin.edu/honors?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/156?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.oberlin.edu/honors/265?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F265&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:megan.mitchell@oberlin.edu


OBERLIN COLLEGE 

 

 

 

 

PILLARS AND BUTTES: A PETROLOGIC COMPARISON OF MODERN AND 

ANCIENT HYDROCARBON SEEP ROCK 

 

 

 

 

 

HONORS THESIS 

 

DEPARTMENT OF GEOLOGY 

 

 

 

 

 

 

BY 

ERICA MORELLI 

 

KARLA PARSONS-HUBBARD, RESEARCH ADVISOR 

 

OBERLIN, OHIO 

MAY 2015 

 

  



 2 

CONTENTS 
 
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
PURPOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
 Production of Authigenic Rock at Cold Seeps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 
 Background of Sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 
  Gulf of Mexico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 
  Tepee Buttes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 
SAMPLE AREAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 
 Gulf of Mexico Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 
 Tepee Buttes Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 
METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 

I. Petrographic Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Point Counting and Transect Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 
Areal Determinations of Fabric Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 
Acetate Peels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 

II. Techniques for Determining Terrigenous Content  . . . . . . . . . . . . . . . . . . . . . . .16 
Staining  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 
Digestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
Scanning Electron Microscopy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 

III. Techniques Used to Identify Later Diagenetic Changes . . . . . . . . . . . . . . . . . . . 18 
Cathodoluminescence Petrography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
Isotope Geochemisty  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 

RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 
 Pillar Rock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

I. Fabric Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 
II. Relationships Between Fabric Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 
III. Isotopic Signatures of Fabric Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 
IV. Other Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 

 Tepee Buttes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
I. Fabric Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
II. Relationships Between Fabric Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
III. Cathodoluminescence of Fabric Types . . . . . . . . . . . . . . . . . . . . . . . . . . .25 
IV. Isotopic Signatures of Fabric Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 
V. Other Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 

 Garden Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 
 Micro to Mesostructural Formation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 
 Seep Rock Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 
 Diagenesis/ Formation Post-Exhumation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 
CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 
FIGURES AND TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a-pp 
 
 



 3 

ACKNOWLEDGEMENTS 

 

 I would like to thank my research advisor, Karla Parsons-Hubbard for her invaluable 

support, commitment, and help with this project. The honors committee of Bruce Simonson, 

Russell Shapiro and Kristie Dorfler gave me the additional support and input that I needed to 

complete this undergraduate thesis. A special thanks to Russell Shapiro for meeting with, giving 

me an immense amount of insight on the Tepee Buttes rocks and letting me use the facilities at 

Chico State University. Additional thanks to Dr. Paul Aharon and Joe Lambert of the University 

of Alabama Geological Sciences Department for taking the time to welcome me into their labs, 

show me how to use state-of-the-art equipment, and help me to interpret the Gulf of Mexico 

rocks. My lab partner Eint Myat Kyi was helpful in talking through concepts and ideas and was 

good company throughout this project. Finally, without the help of Nigel McMillion in sample 

prep and thin section making, petrographic studies for this project would not have been possible.  

 

 

  



 4 

 

 

 

 

PURPOSE 

 Literature on the formation of authigenic rock at cold seeps focuses on the role of 

microbes in creating geochemically favorable environment for the precipitation of carbonate and 

barite minerals. Less understood is the pathway that lithified microbial patches of seafloor 

sediment follow to become rock formations that are identified in strata dating back to the 

Silurian. In this study I will compare Holocene seep rock from the Gulf of Mexico to Cretaceous 

carbonates that have been identified as seep rock. Through the study of rock in its early stages of 

formation to rock that has likely undergone multiple phases of diagenesis I aim to establish a 

hypothetical sequence of formation of the Cretaceous seep rocks.  
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INTRODUCTION 

 Hydrocarbon seeps represent a burgeoning field of study for modern-day carbonate rock 

analyses. Though these types of petroleum seepage sites were relatively unknown for a long 

period of time, the past thirty years have led to a greater understanding of these environments as 

well as a better ability to recognize where seeps are occurring worldwide today (Table 1). In 

addition to modern day seeps, which are of particular interest to energy and oil companies, 

ancient seeps and their microbe-based ecosystems have been found in a variety of different 

geologic settings worldwide, with some dating from the Silurian and possibly as far back as the 

Cambrian and Proterozoic (Campbell, 2006). There exists a fairly vast diversity of seep types 

(Campbell et al., 2002) but similarities between modern seeps and ancient seeps can still be 

made based on commonly shared characteristics. 

 Hydrocarbon seeps are often grouped together with hydrothermal vent settings because 

both occur at continental margins or plate boundaries and exhibit effluence of chemical-rich 

fluids that allow for an association of microbial life and macrofaunal life to proliferate 

(Campbell, 2006). However, the two types of sites have significant differences in mode of 

effluence and conditions surrounding their respective environments. Hydrothermal vent settings 

are distinguished by the higher temperature of their effluence, which is heated by geothermal 

activity at active tectonic boundaries. The vent structures produced look similar to the structures 

seen at hydrocarbon (cold seep) sites, but differ in chemical composition and origin of formation. 

Cold/ hydrocarbon seeps typically form at passive continental margins and are the product of 

effluence of hydrocarbons released via tectonic activity. Current debate focuses on whether or 

not these hydrocarbons are sourced from the gas hydrate stability zone (400 to 1600 meters 

below the sediment-water interface at temperatures between 0 to 10 Co ; Foucher et al., 2009).  



 6 

 

Production of Authigenic Rock at Cold Seeps 

 The setting necessary for precipitation of carbonate rock in seep environments depends 

on an array of tectonic, sedimentary, biological, and chemical factors that are distinguishable at 

the microscopic scale. In the presence of methane and simple chain hydrocarbons, microbes and 

bacteria on the seafloor and within the sediment produce an extracellular polymeric matrix (EPS) 

that initiates the microbial and bacterial mat structures through trapping, binding, and 

precipitating sediment within the EPS. These mat structures are a crucial component of the 

hydrocarbon seep environment because they provide the substrate for further growth of 

additional microbes and macrofaunal species. Chemical and physical factors at seeps create 

gradients and microenvironments that allow for the growth of different species of microbes and 

bacteria. Beneath the mat and within the sediment, a zone of reduction is established through the 

addition of nitrate, ferric iron, tetravalent manganese, and sulfate into the system that allow 

anoxic oxidation of organic carbon (Stolz, 2000). At this zone, organic matter is oxidized and 

sulfate is reduced to produce bicarbonate ions through the reaction: 

 2CH2O + SO4
2− <  > H2S + 2HCO3

−    (1.1). 

In the presence of available calcium ions, the carbonic acid then reacts to precipitate carbonate 

rock as in reaction:  

 Ca2+ + 2HCO3
− <  > CaCO3 + CO2 + H2O   (1.2). 

An alternate pathway can additionally lead to the production of bicarbonate (1.2), if methane is 

the hydrocarbon present, as seen in reaction: 

 CH4 + SO4
2− <  > HS− + HCO3

− + H2O    (1.3). 
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 Seafloor microbial mats can become lithified and preserved in the rock record as 

evidenced by a number of fabric types that have been observed at thin-section scale. The 

lithification process includes a degree of ammonification, denitrification, sulfate reduction, and 

anaerobic sulfide oxidation, which lead to the precipitation of micritic fabrics. Lithification traps 

micritic sediments that have accumulated within pore spaces via reactions 1.1 through 1.3, which 

becomes substrate for further microbial growth, thus creating a positive feedback loop of 

microbial mat production. It is commonly observed that the primary fabric type is a laminated 

stromatolitic texture of calcified spar-encrusting microbes and the primary to secondary fabric 

type is a clotted thrombolitic texture (Riding, 2000; Figure 1).  The textures in this study have 

mainly been classified as clotted thrombolitic. 

 Underneath microbial mats, the changes in pore water chemistry lead to calcium 

carbonate (CaCO3) deposition. Bacteria and archaea catalyze the precipitation reaction (1.3) via 

anaerobic oxidation of methane (AOM), which leads to the formation of seafloor authigenic 

carbonates (Bailey et al., 2009). The Bailey et al. study indicates that chemoautotrophic microbes 

occupy the interfaces between oxidized and reduced chemical species, which leads to the 

formation of microbial reefs. When reefs form with methane seeps, sulfate, and anoxic bottom 

waters, they can be partially lithified with calcium carbonate and begin forming in subsurface 

environments. This may cause macroscopic precipitation of a calcareous core that leads to 

growth in the water column as visible columnar or chimney-like structures (Treude et al., 2005).  
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BACKGROUND OF SITES 

Gulf of Mexico 

The continental shelf and slope of the Gulf of Mexico represents one type of methane 

seep environment. The formation of carbonate in surface sediments of the Gulf of Mexico 

(GOM) shelf and slope depends upon the migration of hydrocarbons and some sites exhibit 

precipitation of barite whose origin is unclear. Although the origin of barite is unknown, it is 

thought to precipitate from barium super-saturated formation waters that may originate from 

biogenic input through the water column (Aharon, 2003). In the GOM, intense periods of 

sedimentation and movement of subsurface salt layers resulted in numerous configurations of 

domes and basins on the continental slope (Roberts and Aharon, 1994; Figure 2). During Late 

Jurassic time, the Louann Salt Formation in the Gulf area acted as a seal rock and trapped 

hydrocarbons beneath it. Migration of the salt caused faults to develop in overlying strata. 

Throughout time, movement of the salt layers distorted the salt into irregular diapirs causing a 

fault network to develop through the rising of these salt diapirs. The overlying rock allowed the 

seepage of hydrocarbons from below the Louann salt up to the sediment-water interface through 

these conduits (Aharon, 1994; Figure 3).  

Chemosynthetic bacteria fix hydrocarbons that seep through the seafloor, which leads to 

the precipitation of carbonate rock. The interplay of the carbonates formed and the associated 

hydrocarbon emissions are defined as “chemoherms” (Aharon, 1994). Chemolithotroph 

communities of microbes that undergo oxidation of reduced sulfur compounds are associated 

with chemoherms and are supported by habitats that experience oxic to anoxic transitions. The 

role of thiotrophs (sulfur-oxidizing bacteria) and methanogens and methanotrophs (methane-

oxidizing bacteria) are indispensable in this process as they alter the chemistry of the carbon, 
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sulfur and nitrogen dissolved in seep pore fluids, which allows the super-saturation of carbon 

dioxide (reactions 1.1 - 1.3). Carbonate rock is precipitated if this process is coupled with highly 

alkaline water and a high Dissolved Organic Carbon (DIC) content (Aharon, 2003). Carbon 

dioxide can come from several different sources including: methane oxidation at the sediment-

water interface; aerobic oxidation of organic matter in the water column; and aerobic 

fermentation/ sulfate reduction (Aharon, 2003). In a recent article by Bian et al. (2013), 

precipitated carbonate is found to form in three large-scale structures, based on their method of 

formation. All structures were found to include seawater in the precipitation process and mostly 

precipitated high-Mg calcite or aragonite (Bian et al., 2013). The young carbonate rocks used in 

this study on the Northern Gulf of Mexico are also high-Mg calcite with some aragonite 

constituents and can be classified using this method.  

 

Tepee Buttes 

Hydrocarbon seep environments are also found preserved in Cretaceous rock from the 

Tepee Buttes Formation in Colorado. While these rocks no longer exhibit carbon fixation to 

create carbonate rock, they are remnants of microbial processes that likely occurred during the 

Late Cretaceous in the Western Interior Seaway (Figure 4). Situated within the Upper Cretaceous 

Pierre Black Shale, these mound-like structures are noted to occur in distinct lines parallel with 

the Laramide Orogenic Faults (Shapiro and Fricke, 2002; Figure 5). It is thought that these buttes 

formed at spring-like submarine seep sites with diverse and abundant marine communities, 

similar to the diversity of organisms associated with modern day analogues (Kauffman et al., 

1996). The influx of hydrocarbon-rich water from the surrounding Pierre Shale and Niobrara 

Formations and microbial activity led to precipitation of carbonate rock (see reactions 1.1 to 1.3) 



 10 

subsequent weathering formed the present-day carbonate mounds (Figure 6). Generally, the 

mounds formed intermittently at 30 to 100 meter water depths during the Late Cretaceous for 

1.25 million years (Kaufman, 1984).  

 Shapiro (2000) classifies these rocks as thrombolites, or more descriptively, as 

thrombolitic microbialites. The thrombolite distinction comes from the existence of a host of 

macro and meso structures that are present in nearly all the Tepee Buttes throughout the former 

Western Interior Seaway. It is currently believed that thrombolites represent microbialites that 

are composed of a clotted mesostructure in which mesoclots such as peloids and calcite to 

aragonite cement are the mesostructural components (Shapiro, 2000). These thrombolitic 

structures are widely accepted to be ancient analogues of modern hydrocarbon seep structures, 

such as those present in the Gulf of Mexico rocks. It is proposed that symbiotic chemosynthetic 

bacteria are associated with carbonate precipitation because of their resemblance to modern seep 

carbonates and from possible evidence seen in the occurrence of sulfides, silica replacements, 

and microcrystalline calcite in molds found in rock samples of the Tepee Buttes (Shapiro & 

Fricke, 2002). Additionally, the authigenic carbonate, as well as some of the barium sulfate 

minerals observed in these seep settings, may originate from the microbially mediated process of 

anaerobic oxidation of methane (Campbell, 2006). 

The processes that produce the ancient seep rock are complex due to a long period of 

diagenesis. Campbell, et al. (2002), suggest that during early diagenesis of ancient seep rocks 

from the Mesozoic convergent margin of California, a period of corrosion created vugs and 

residual micrite regions that later engulfed younger cement, followed by crystallization of yellow 

calcite, organic matter, pyrite and then botryoidal cement. The later stage of diagenesis of these 

rocks involves the precipitation of yellow calcite, which is then sometimes coated with 
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framboidal pyrite. Vug and pore-filling sparry calcite are also indicators of later burial 

diagenesis. Once these transformations are complete and nearly all pore spaces are filled, the 

carbonates behave as a closed diagenetic system (Campbell et al., 2002). 

Tepee Buttes rocks contain many similar components to the Mesozoic rocks studied by 

Campbell (2002). In 2006, Anderson also ranked Tepee Buttes rock at thin section scale based 

on the Folk Classification System for carbonate rocks and split the fabric types into: pelmicrite, 

pelsparite, micrite, sparite, and intrapelsparite (Table 2). Anderson further split the carbonate 

textures into growth stages:  yellow calcite phase first, followed by the growth of botryoidal 

calcite, and finally by the growth of sparry, void-filling calcite (Anderson, 2006).  

 

I propose that the Gulf of Mexico carbonates are good modern representatives of seep 

rock formation at its earliest stages. Thus, I will compare Cretaceous carbonates that have been 

identified as cold seep carbonates, to these modern rocks to build a history of formation and 

diagenesis in cold seeps. This study hopes to expand upon Anderson’s classification of 

Cretaceous seep carbonates and call to question her proposed stratigraphic method of formation 

in the Tepee Buttes rocks. My aim is to use a comparison of the Tepee Buttes to the Gulf of 

Mexico Pillar Rock to show an alternative method of conduit formation of the Buttes. 

Similarities between the two might bring to light a standard process of formation of hydrocarbon 

seep rocks that can be seen across varying environments and could be used to recognize and 

interpret fossil seep systems.  
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SAMPLE AREAS 

Gulf of Mexico Samples 

 The Gulf of Mexico seeps surveyed in this study are comprised of several different sites 

throughout the continental slope, with a specific focus on the OCSG Pillar Rock site. The OCSG 

Pillar Rock is located in the Outer Continental Shelf offshore from Galveston, TX (~150km 

SSE). This rock exists as a large pillar with its visible base at roughly 190 meters below the 

surface of the water. This chimney-like structure is about 4.5 meters tall and has no obvious 

central conduit, which may indicate that it has diffuse conduit holes existing throughout the 

entirety of the structure (Figure 7). Life is ubiquitous at this site in comparison with the barren 

muddy seafloor surrounding the pillar. Fish and crab are found close by and there is an 

abundance of sponges associated directly with the structure. Samples from this site were 

collected on several different days with the initial discovery made in the summer of 2006 by the 

Shelf and Slope Experimental Taphonomy Initiation (SSETI) research group. All samples exhibit 

a highly porous texture with abundant boring and conduit holes as well as a variety of different 

macro (clams, sponges, etc.) and micro (bryozoans, foraminifera, etc.) faunal associations. The 

rocks are generally grayish in color but exhibit some degree of red-brown discoloration via 

oxidation. This indicates that some amount of iron must be present in the formation or the rocks 

were exposed to oxygenated conditions at some point in the past. Samples from the Pillar Rock 

site were labeled by date sampled or location of storage. Samples analyzed included 

OCSG83106, OCSG90106, and OCSG Bucket #3 (OCSGB3). 

 Other sites from which samples were collected, but were not extensively analyzed in this 

study, are Green Canyon site 272 (GC272) and Garden Banks site 425 (GB425). Green Canyon 

represents a similar carbonate rock site associated with hydrocarbon seepage but with a different 
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pattern of precipitation that appears predominantly muddier and less bored by fauna. Garden 

Banks represents a different type of seep site entirely: the primary precipitated constituent is 

barite rather than carbonate and the site has an entirely different set of faunal associations than 

the Pillar Rock site. The GB425 rock samples exhibit banding textures on the hand sample scale 

that show alternating layers of bluish barite rock and layers of white barite rock. These generally 

appear to occur semi-concentrically around what appears to be a main conduit space. Fu et al., 

noted similar banding textures at barite sites in the Gulf of Mexico (1994).  

  

Tepee Buttes Samples 

 Parsons-Hubbard, Shapiro, and students collected Tepee Buttes samples from several 

different locations during field collections in 2005 as part of an NSF-funded project of the Tepee 

Buttes. Of the samples collected, I initially determined that the Buttes could fit into one of two 

categories: vuggy, heavily cemented rock with abundant peloids and rock with an abundance of 

lucinid bivalve remains. I chose to focus on Butte 326.5 (007) and Butte 710 (014) in this study 

because I felt they were rough representations of these two categories; Butte 326.5 being mostly 

of the vuggy rock and 710 mostly of the bivalve rock (Figure 8). The 300 series of buttes are 

found in the Boone Road cut location (Figure 9) and the low to high 700 series buttes are found 

in the North Ranch location (Figure 10). The Boone Road and North Ranch locations reflect 

different geographical locations in Colorado with the Boone Road buttes being closer to Boone, 

CO in Pueblo County and the South to North Ranch buttes being located closer to Colorado 

Springs, CO.  
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METHODS 

I. Petrographic Procedures 

Point Counting and Transect Analysis 

 Point counting was used to make an initial classification of rock types and to determine 

the rock type of the Gulf of Mexico samples. This determination was used to place the samples 

within the Folk Classification scheme (Folk, 1962) for a better comparison with the Tepee 

Buttes. Pictures of thin sections were taken using a Leica microscope with a LAS EZ camera. 

Photomicrographs of each thin section were taken at 40x magnification and processed in Adobe 

Illustrator on which a 10x10 grid was superimposed. At the meeting of each crosshair, bioclasts, 

micrite, or cement was recorded for a tentative determination of general rock composition. For 

both the Pillar Rock and the Tepee Buttes samples, 50 points were counted for each image. 

Specific numbers of spots (per photomicrograph) for sample thin section slides can be seen in 

Table 3.   

 

Areal Determinations of Fabric Types 

 Using the National Institute of Health’s freely available ImageJ software, thin section 

photomicrographs (4x magnification) from the Gulf of Mexico and Tepee Buttes samples were 

analyzed to determine the areal percentage of different fabric and cement types present in each 

sample (samples used shown in Table 3).  

 Using a classification scheme created for this project which is based on determinations of 

fabric type variance from the Folk Classification System, constituents of these samples were 

grouped into seven major categories: 1) Sparry calcite cement, 2) Allochems, 3) Hole and/or 

pore space, 4) Micritic peloidal matrix, 5) Botryoidal cement, 6) Yellow calcite, and 7) Muddy 
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accumulated sediment. Point counting was used initially as a first approximation of what was in 

the Pillar Rock versus the Tepee Buttes and aided in creating these categories.  In this study, 

allochem refers to a clump of peloidal and micritic material that may have origins during the 

original lithification on the seafloor but also includes other constituents that are not original to 

the matrix of the rock. In ImageJ, thin section and acetate peel photomicrographs were traced 

using the freehand trace tool to create a polygon surrounding a particular type of cement or 

fabric. Pixel area of that polygon was measured and recorded in units of pixels squared. Total 

area of each type of cement/fabric was calculated against the pixel area of the entire image to 

show the percentage of each type present in a given photomicrograph. The areal percentage 

method, instead of point counting, was used for final analysis of constituents because it proved to 

be more accurate amongst samples. 

 

Acetate Peels 

  In order to analyze the textural properties of the rocks sampled, acetate peels were made 

from two of the Tepee Buttes hand samples and one of the Pillar Rock hand samples (Table 3). 

This method was used to reveal a greater level of textural detail than seen with the thickness of 

the standard thin section. Samples were cut in half and polished with grit to achieve an even 

surface. The smoothed surface was washed and prepped for the peeling process. Acetone was 

poured onto the smooth surface and a piece of acetate paper was applied and smoothed out to 

free the surface of bubbles and aid in adhesion. The acetone-acetate treated rocks sat for roughly 

15 minutes, after which the peel was ripped off of the rock, causing a thin layer of rock to adhere 

to the acetate sheet. The standard thickness of these sheets (< 20 microns) is much thinner than 

the standard thin section used in this project.  
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II. Techniques for Determining Terrigenous Content 

Staining 

 Both Tepee Buttes and Gulf of Mexico samples were stained to better distinguish 

between carbonate and terrigenous material and between different types of calcium carbonate in 

thin section. Using the methods elucidated on the University of Cambridge Geology Department 

website, a solution of 300ml 0.5% HCl was mixed with 0.6g Alizarin red S (and filtered) while a 

solution of 200ml 0.5% HCl was mixed with 4g potassium ferricyanide. After the Alizarin red 

solution was fully filtered, the two solutions were mixed together in a 600ml beaker. Thin 

sections were held with tweezers for better precision and dipped halfway in the staining solution 

for 45 seconds. Half-and-half dipping was done in order to create a comparison point of dyed 

slide to non-dyed slide. After staining, the entire section was rinsed with deionized water and 

stood against a beaker to dry.   

 

Digestion 

 An acid digestion was performed to measure the percentage of terrigenous material 

present in Pillar Rock and Tepee Buttes samples. Small pieces weighing roughly 25 to 150 grams 

each were washed and dried in an oven for 4-6 hours. A 10% HCl acid solution was prepared 

and a sample of cleaned and dried rock was weighed, recorded, and placed in the acid for 12-36 

hours or until the digestion process was complete. After digestion, each individual sample was 

filtered for an additional 12-24 hours to collect the leftover terrigenous material on a piece of 

filter paper, after which the filter paper sample was placed back in the oven to dry for 4-6 hours. 
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With the drying complete, the sample was weighed, recorded, and calculated for percentage of 

terrigenous material. 

 To confirm the accuracy of the terrigenous mass percentage calculation for each sample, 

point-counting methods of stained samples were employed to compare the number of points of 

terrigenous constituents to the number of carbonate constituents. Using the staining method, thin 

sections of Pillar Rock (Bucket #3 and OCSG83106; Table 3) were stained and analyzed using a 

Petrographic microscope. Pictures were taken of the thin sections using a Leica Microscope with 

a LAS EZ camera at 40x magnification. Pink textures denoted areas of fine-grained carbonate 

matrix and unstained matrix denoted terrigenous material. Using Coral Point Counting software 

(CPCe version 4.1), the photos were processed to overlay a randomization of 30 crosshair points 

over the entire picture. Points were counted as carbonate or terrigenous based on what the 

crosshairs intersected; any crosshairs that intersected holes or cracks fell into a third category of 

‘other’. After points were collected, totals and percentages were calculated for the pictures and 

compared with the percentages calculated from the acid digestion process. 

 

Scanning Electron Microscopy 

 Two main methods of microscopy were employed for the analysis of textural and 

chemical composition of these rocks. Using JEOL-SEM and Oxford Electron Dispersive 

Spectroscopy (EDS) software in the Oberlin College Geology Department, thin sections from the 

Tepee Buttes as well as Pillar Rock (Gulf of Mexico) were carbon coated and analyzed using 

both Scanning Electron Imaging (SEI) and Back-Scatter Electron (BSE) imaging. SEI imaging 

allows for analysis of crystal microstructures in thin section and BSE detection can acquire 

chemical data for those crystals and other areas of interest in the samples. BSE was mainly used 
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to determine the relative amounts of smaller constituent minerals such as barite and pyrite, which 

are present in the Tepee Buttes and Pillar Rock (samples used in Table 3). Stub samples were 

made to photograph crystal structures of Gulf of Mexico samples (OCSG83106 and GB425) and 

locate differences in cement types based on differences in topographic expression of crystal 

structure. Certain geometric forms visible at high magnification can reveal differences in fabric 

types that otherwise appear the same in petrographic methods (e.g. barite rosettes, pyrite 

framboids, etc). 

 

III. Techniques Used to Identify Later Diagenetic Changes 

 

Cathodoluminescence Petrography 

Cathodoluminescence Petrography (CL) can provide visual cues to understanding the 

diagenetic relationships between grains, matrix, cements, porosity evolution, and replacements 

that occur in carbonate rocks (Hiatt and Pufahl, 2014). CL Petrography was conducted on a 

Relion ELM-3R Luminoscope with a Nikon Coolpix camera attachment at Chico State 

University courtesy of Professor Russell Shapiro. Photomicrographs of an area of interest were 

taken to document the site for comparison with possible luminescence. Voltage was held at 

roughly 10 to 12 kV, the current was held at roughly 0.037 DCmA, and the chamber vacuum was 

held between 30 and 60 millitorr. Final images showing luminescence were taken of each area 

and saved to an external hard-drive for later processing. 
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Isotope Geochemistry 

 Stable isotopes of carbon can reveal bacterial activity present in the formation of 

carbonate and with the addition of oxygen isotopes can track diagenetic fluids between 

individual petrofabrics (Anderson, 2006). In addition, decreasing values of δ O18  can indicate 

fluid-rock alterations (during metamorphosis and diagenesis) but diagenetic modifications are 

not as apparent from the δ C13  values.  

 Stable isotope analyses of seventeen samples amongst Pillar Rock and Tepee Buttes hand 

samples (Table 3) were conducted at the University of Alabama Geological Research Facility 

with a DeltaPlus mass spectrometer with gas dispenser. Under the direction of Dr. Paul Aharon 

and Dr. Joe Lambert, powdered samples from selected textural phases chosen via thin section 

were collected using a drill machine in the Alabama Stable Isotope Lab (ASIL). Most locations 

for Pillar Rock seemed to exhibit a mottled or slightly alternating blue and white fabric pattern. 

Most samples were drilled in the center of mottled white and blue blocks with the exception of a 

sample that was collected along the rim of a conduit hole and a sample collected at the rim of a 

hole created by a tubeworm. Powdered samples between 60 and 105 micrograms were weighed 

and collected in small glass vials. Samples were recorded and labeled by sample type and weight 

using Isodat 2.0 software. All samples were loaded and placed amongst various standards with 

similar weight amounts (NBS-19) and underwent a CO2 gas exchange and a Helium gas 

exchange before being injected with an acid to convert the powder to a gaseous phase for 

analysis. After completion of these steps, stable isotopes of carbon and oxygen were collected for 

each vial and subsequently compared to and corrected against the standards. The universal 

standard of Vienna Pee Dee Belemnite (VPBD) was used for comparison of isotopes. 
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RESULTS 

 

 The Gulf of Mexico samples are generally classified as biomicrites while the Tepee 

Buttes rocks are classified as pelbiosparites due to the large amount of calcite and aragonite 

cementation as well as the abundance of peloids (Folk, 1962; Table 2). This initial classification 

is based on observations of hand samples and the work of Anderson (2006) and was used to help 

direct further analysis from methods used in this study. 

 

Pillar Rock  

 

I. Fabric Types  

 Point-counting methods reveals that the Pillar Rock samples contain 12% bioclastic 

material while over two-thirds of the rock qualifies as lime-mud matrix, placing the Pillar 

samples under the Sparse Biomicrite category (Table 2). Collection of data using the areal 

percentage method revealed that the Pillar Rock is primarily composed of micritic peloidal 

matrix at roughly 80% of the total sample data collected (Table 4). The next largest constituent is 

void or pore space at ~12%, followed by botryoidal cement (~6%) and muddy accumulated 

cement (~3%). In general, the Pillar Rock does not exhibit the same diversity of fabric and 

cement types as the Tepee Buttes samples. 

 Digestion of several samples (Table 3) from the Gulf of Mexico OCSG Pillar Rock 

reveals that the carbonate generally consists of roughly 16 ± 7% terrigenous material and 85 ± 
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7% carbonate material. Point counting also confirms the values 13 ± 3% terrigenous material and 

87 ± 3% carbonate material. Results are shown in Table 5.  

 

II. Relationships Between Fabric Types 

 In hand sample, the Pillar Rock exhibits a homogenous texture within discretely defined 

blocks, which are categorized as fundamental building units of the conical pillar structure (Figure 

11). In thin section, these blocks are generally indistinguishable, but heterogeneous zones are 

found in several areas of thin section photomicrographs, that are indicative of the block units. 

Small peloids (~ 0.20 - 0.50 microns) appear to be embedded in the micritic matrix and are 

generally of a larger grain size than that of the matrix. Micrite is defined as the general fabric of 

the blocks and can include the small peloids, dendritic pyrite textures, siliciclastic bits (~0.2 – 

0.5mm; Figure 12), and shell fragments of foraminifera. Some blocks contain an abundance of 

shell fragments, peloids and dendrites within the micrite and others have siliciclastic inclusions 

in the micrite (Figure 11). Blocks can be distinguished in thin section by the differences in these 

constituents. Another distinct texture is an alternating blue and white mottled texture (Figure 13), 

visible in both thin section and hand sample; of this texture, white appears to be the 

overwhelming constituent in hand sample. Blue appears reddish brown in thin section. Some of 

these areas are more porous than the typical micritic peloidal matrix.  

 Small pore spaces and zones between different blocks have botryoidal calcite growth 

(Figure 14). Some blocks have boring holes that are defined by sharp boundaries while others 

were cut by conduit holes that are defined by less distinct boundaries with a stained rim 

surrounding the entire hole (Figure 15). In general, blocks are cross cut by a diffuse array of 

conduits; there is no apparent central conduit around which the blocks accrete. There is an even 
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split between unfilled holes (either boring or conduit), muddy accumulated sediment filled holes, 

and partially cemented holes.  

 

III. Isotopic Signatures of Fabric Types  

 Isotopic analyses of the Pillar Rock reveal some variations in carbon and oxygen stable 

isotope values (Tables 6 & 7). Carbon (δ C13 ) values range between -33.6 and -40.4 ‰ VPDB 

and oxygen (δ O18 ) values between 1.9 and 2.2 ‰ VPDB. 

 Generally, the stable isotope signatures for the Pillar Rock samples did not vary 

significantly, especially in the case of the oxygen stable isotope values. It should be noted that 

there are few differences between the hand sample and thin section fabric types for each sample 

location from which powder sampling was conducted. In general, the sample values hovered 

between the -36 and -40 ‰ range with the exception of two locations, which had significantly 

lower values (-33 and -34 ‰). When these sections were compared with the thin section and 

hand sample locations that were initially sampled, these values correlate with locations of higher 

porosity and increased cementation. The other locations (with -36 to -40 ‰ δ C13  values) 

correlate with areas of much denser micrite. Locations on samples that have a denser micritic 

composition exhibit a higher degree of pyritic framboids. This does not hold true for the more 

porous and highly cemented locations, which have a higher degree of botryoidal growths 

apparent in thin section, but do not exhibit the same density of pyritic framboids as the other 

locations. 
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IV. Other Features 

 Secondary Electron Imaging (SEI) microscopy and back-scatter electron detection (BSE) 

for the Gulf of Mexico Rocks revealed a significant weight percentage of iron inclusions with the 

highest hovering around ~45% for individual spot analyses (Figure 16). Some samples had much 

lower iron signatures but this was likely from the location of the spot surveyed during BSE 

analysis. Locations that were closer to the rims of conduits and boundaries tended to have higher 

iron signatures due to the abundance of pyrite framboids (Figure 17) in these areas. 

 

 

Tepee Buttes  

 

I. Fabric Types  

 Based on areal percentages as well as the work of Anderson (2006) and Shapiro (2002), 

Tepee Buttes samples were tentatively classified as pelbiosparites due to the high percentage 

(~23%) of sparry calcite cement as well as high percentage of allochems made of peloids and 

peloidal matrix (~27% and ~28% respectively). With well over half of the rock consisting of 

some sort of spar or peloidal constituent, these samples align with other classifications of the 

Tepee Buttes (Anderson, 2006). Tepee Buttes samples exhibit a fairly even split between micritic 

peloidal matrix (~28%), allochems (~29%), and sparry calcite cement (~23%) as the dominant 

constituents (Table 4). Other constituents represented in these samples include botryoidal cement 

(~ 14%), followed by yellow calcite (~6%). Void/pore space is present, but only in a negligible 

quantity (~0.2%). Generally, the fabric types seen in the Tepee Buttes represented a similar but 

more diverse array than those seen in the Pillar Rock. 
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II. Relationships Between Fabric Types 

 In the Tepee Buttes, the micritic peloidal matrix contains peloids smaller than ~0.50 

microns, very few shell and foraminifera fragments, and has small inclusions of siliciclastics and 

dendritic or framboidal pyrite (Figure 18). The boundaries between this fabric type, allochems, 

and sparry calcite can be poorly-defined and as in Figure 19, can morph into space containing an 

abundance of peloids larger than ~0.50 microns. However, allochems are a distinct fabric type 

from the sparry calcite and from the micritic peloidal matrix. There is a range of material that can 

be included in an allochem, but generally they encompass areas that contain bits of relict fabric 

types and/or peloids that are surrounded by yellow calcite growth and held together with a 

different stage of botryoidal calcite growth (Figure 19). The peloids included in allochems tend 

to be larger and have more than one contact per grain. Some allochems contain pieces of the 

micritic peloidal matrix that are surrounded by isopachous rims of yellow calcite (Figure 20). 

The larger peloids that are not part of an allochem tend to have less than one contact per grain 

and thus constitute a self-supported detrital framework. The peloids in these areas are not 

surrounded by yellow calcite but appear to be further cemented by botryoidal calcite (Figure 21).  

 Void spaces are apparent in hand sample, primarily in Butte 326.5, and are randomly 

dispersed throughout the thin sections. Most voids have fuzzy boundaries and contain sparry 

calcite. The boundary between allochems and the sparry calcite void-fills is especially evident in 

areas where there are thick yellow calcite growths (Figure 22). A different occurrence of sparry 

calcite is seen in the remains of bivalve shell fragments. This cement can either be contained 

within the confines of the shell fragment or can extend to the inner part of the shell and around 
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allochems (Figure 23). Bivalve shell fragments cross cut some peloids and allochems in several 

areas but also have peloids directionally oriented within them in other areas (Figure 24). 

 Other textures that should be noted are roughly concentric-like gray rings within many 

areas of the micritic peloidal matrix (Figure 25). Significant siliciclastic material was also noted 

in the Buttes samples with grain sizes ranging from ~0.01 to 0.2 mm in largest dimension (Figure 

12).  

 

III. Cathodoluminescence of Fabric Types 

 CL petrography reveals that Pillar Rock samples did not luminesce, while many sections 

of the Tepee Buttes rocks luminesced dark red.  Differences in luminescence of sparry calcite 

were noted between vug/pore spaces, veins, and bivalve segments (Figure 26). In general, 

peloidal micritic matrix did not luminescence while botryoidal cement exhibited weak to no 

luminescence.  

 

IV. Isotopic Signatures of Fabric Types 

 Two samples from Tepee Buttes (Buttes 326.5 and 710; Table 3) were compared with the 

Pillar Rock. All samples reveal similar ranges of carbon isotopes (-12.5 to -37.1 ‰ VPDB) but 

the Pillar Rock exhibited much heavier oxygen values, which ranged from -2.9 to -12.2 ‰ 

VPDB. 

 Tepee Buttes samples exhibit a greater variation in carbon stable isotope signatures than 

the Pillar Rock. Three fabric types were sampled: yellow calcite, sparry calcite, and a mix of 

allochems and micritic peloidal matrix that were grouped together for the purposes of analysis 

due to the uncertainty introduced in connecting thin section photomicrographs to the sites within 
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each sample (Table 8). Sparry calcite locations seemed to exhibit a higher carbon isotope 

signature, with values of -12.5, -22.5, -23.1, and -23.9 ‰. Yellow calcite was often partially 

mixed with allochems and/or matrix, which complicated the connections to certain δ C13  values. 

In general, the yellow calcite and allochem/matrix values were roughly the same with values 

falling between -30.0 and -32.0 ‰ δ C13 . One outlier was noted with a value of -37.1 ‰ and a 

higher value of δ O18  at -5.9 ‰. Oxygen stable isotope values generally fell between -10 and -12 

‰, but the outlier sample that had a higher value of δ C13  also had a much higher value of δ O18  

at -2.9 ‰ (Table 8).  

 

V. Other Features 

 BSE detection of the Tepee Buttes rocks showed a high iron content ranging between ~20 

to ~60 wt% (Figure 27). Tepee Buttes rocks additionally had areas with significant signatures for 

barium and some strontium. At the locations where barium occurred, weight percentages tended 

to range between ~40 and ~57 and are associated with strong sulfur signatures, indicating that 

the mineral being sampled was likely barite (Figure 28). 

 

 

Garden Banks 

 

 Though the main precipitates at seep sites in the Gulf and elsewhere are of carbonate 

rock, other types have been discovered. The most anomalous of these are the barite seep 

environments observed in rock samples from this study as well as observed and described 

extensively by Paul Aharon in a study of Gulf seep sites from 2003 (Aharon, 2003). One of the 
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sites surveyed in this study, Garden Banks (GB425), exhibits barite chimneys, confirmed with 

SEM analyses of epoxy-impregnated thin sections and stub samples of the rock; on average, thin 

sections contained ~51 wt% barium (Ba), ~15 wt% sulfur (S), and ~3 wt% strontium (Sr; Figure 

29). Other elements, such as calcium, appeared in several of the locations analyzed but did not 

represent a significant weight percentage. Characteristic rosette crystal structure for barite 

growth was also observed in a sample from Garden Banks site 425 (Figure 30). 

 

 

DISCUSSION 

 

Micro to Mesostructural Formation 

 Hydrocarbon seep environments can be identified by a number of different factors, 

including shape of the rock structure, visible effluence of hydrocarbons, and abundances of 

macro-fauna in areas of the seafloor that are otherwise desolate. These characteristics were all 

noted for the Pillar Rock site, which exhibits a typical conical to pillar-like rock formation 

(Figure 7). Video footage of the Pillar Rock site taken by the SSETI team members Karla 

Parsons-Hubbard, Rick Krause, and Kathryn Ashton-Alcox in 2006, showed small locations of 

what was potentially active seepage of hydrocarbons. Video footage and photographs taken on 

site also show associations of several different types of macro-fauna, including several species of 

clams and sponges. Larger fish and crabs are commonly found around these sites, likely 

secondary beneficiaries of the seep ecosystem. 

  Evidence of microbial activity is noted in video footage of the surrounding Pillar Rock 

area and other sites nearby the Pillar Rock that exhibit typical white microbial mats on the 
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seafloor that have been noted in other studies of the Gulf of Mexico (Roberts & Aharon, 1994). 

The alternating nature of the blue and white lamination textures in hand samples of the Pillar 

Rock are also indicative of a microbial mat formation mechanism: mats tend to preferentially 

grow towards the surface as sediment accumulates on top of them over time (Treude et al., 2007; 

Figure 31). While these attributes are easily noted for the modern-day Pillar Rock, they are hard 

to distinguish and sometimes impossible to note in the Cretaceous Tepee Buttes samples. Despite 

the great span of time between the creation of the Pillar Rock and the Tepee Buttes, the evidence 

of microbial activity indicates that both locations represent examples of hydrocarbon seeps.  

 Both the Pillar Rock and the Tepee Buttes sites examined in this study exhibit micrite 

cement as the predominant fabric type, indicating that these sites at least began with the same 

fundamental building block. The main difference between the modern and ancient sites is the 

presence of allochems in the Tepee Buttes sites. The allochems are representative of a different 

stage of fabric formation that likely happened post-micrite formation and after subsequent 

diagenetic events that could have created pore spaces into which the allochems accreted. 

Allochems host peloids with isopachous rims, which are evidence for the Tepee Buttes structures 

being exposed in marine water for sometime during their diagenetic history. The allochems were 

likely later cemented in place through the introduction of sparry calcite into these voids possibly 

after the Western Interior Seaway drained and the rock formations were buried in sediment (or 

vice versa). Additionally, the barite signature present throughout Butte thin section samples can 

be explained through the continuous input of marine waters over time throughout the Western 

Interior Seaway, because barium is a relatively common mineral at depth in ocean water. 

 Barium was also observed in an entirely different type of seep environment in the Gulf of 

Mexico. A study by Aharon (2003) revealed that samples of barite (BaSO4) that precipitate from 
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Garden Banks and the Auger Basin are from mudflow environments that have depositional lobes 

with distinct boundaries. The mud erupting at these sites showed an anomalous enrichment in Sr, 

Ca, and Ra. The current hypothesis for the formation of barite from these constituent waters is 

the connate model, which suggests that the advection in deep-seated, methane-rich formation 

waters along fault conduits brings in fluids rich in Ba, Ra, Sr, Cl, and Ca but deficient in sulfate. 

When these fluids come in contact with the sulfate-rich seawater, they become supersaturated 

with barium and sulfate/ide and lead to the precipitation of barite chimneys (Aharon, 2003). No 

barite was found in the Pillar Rock samples. 

 In the Pillar Rock, SEM and petrographic analyses reveal significant groupings of pyritic 

compounds with a typical framboidal growth formation (Figure 17). These groupings of iron-

sulfides are hypothesized to be corrosion products of sulfate-reducing bacteria (SRB; Enning and 

Garelfs, 2014) and thus, direct evidence of SRB. SRB live within the sediment and fix the 

hydrocarbons to preferentially form the carbonate mud-matrix that is extremely abundant in the 

Pillar Rock samples, taking up roughly ~80% of the total rock type from the samples surveyed. 

They leave behind elemental sulfur, which can then react with available ions to create the 

framboid or dendrite structures seen in thin section. 

 Similar to the Pillar Rock, BSE analysis of the Tepee Buttes rocks show a significant iron 

signature and petrographic methods reveal a similar abundance of pyritic framboidal structures, 

potential evidence of sulfate-reducing bacteria (SRB). The general appearance of these 

framboidal structures is almost identical to the Pillar Rock and framboids are found in the 

micritic peloidal matrix of this site and the Tepee Buttes sites. Due to the older age of the Tepee 

Buttes rocks, direct evidence of microbial mats was not found. Additionally, their significant 

diagenetic overprinting over geologic time, as noted by the much higher abundance of cement 
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fabric types may have contributed to the lack of true microbial signatures. However, further 

evidence of microbial activity, through petrographic surveys of several of the Tepee Buttes thin 

sections, is seen by the characteristic patterns of roughly concentric growth rings of a more 

grayish color as compared with the surrounding micritic peloidal matrix (Figure 25). These 

concentric gray rings are evidence of microbial activity because they represent denser, clotted 

(thrombolitic) areas of the precipitated rock that formed through microbial trapping of sediment 

and subsequent lithification (Riding, 2000). Thus, I hypothesize that the micritic matrix of the 

Tepee Buttes rocks had a similar mode of formation to the Pillar Rock with significant sulfate-

reducing microbe activity. It is likely that several different types of microbes existed in the Tepee 

Buttes (and in the Pillar Rock) that were active in forming the micritic peloidal matrix. For this 

reason, I establish that the micritic peloidal matrix - represented by the grayish-bluish fabric type 

in the modern Gulf seep rocks correlates with the tannish fabric type in the Tepee Buttes 

samples. Therefore, the micritic peloidal matrix is the fundamental building block of 

hydrocarbon seep sites and can be identified across many different locations and even across 

geologic time.  

   

Seep Rock Formation 

Comparisons between the Pillar Rock and the Tepee Buttes lead to an emerging picture 

of the mode of formation of authigenic carbonate at hydrocarbon seeps. The first stage is the 

series of chemical reactions (reaction 1.1-1.3) via sulfate reduction and/or anaerobic methane 

oxidation (from methane-oxidizing Archaea) that lead to an alkaline microenvironment with an 

abundance of calcium ions that cause the precipitation of the micritic peloidal matrix. This likely 

happens somewhere between the sulfate-methane interface (SMI) and the sediment-water 

interface (SWI) depending on the sample and the amount of oxygen available to the microbes. 
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The sulfate-methane interface occurs at around 60-100 cm below the sediment-water interface 

based on a study conducted on a similar SMI from a California continental margin setting 

(Harrison et al., 2009). The sulfate-methane interface is further defined as existing underneath 

sulfate-bearing sediment but above sulfate-depleted, methane rich sediment, where methane and 

sulfate are consumed and dissolved inorganic carbon (DIC) and hydrogen sulfide (HS-) are 

produced (Ussler 2003). This interface may have been at a different depth in the Cretaceous 

when the Tepee Buttes seeps were forming, which could account for some of the variations in 

composition and texture. The precipitated structure begins to accumulate subsurface and, in the 

case of the Pillar Rock, forms the base of the chimney structure. Inclusion of a significant 

siliciclastic component lends itself to the hypothesis that the initial building block of the micritic 

peloidal matrix blobs formed from the influence of pore water in this shallow surface sediment 

area (between 10s to 100s of centimeters below the sediment-water interface and the sulfate-

methane interface). Local siliciclastics were thus incorporated as a partial component of the 

pelmicrite that makes up most of the micritc peloidal matrix blobs. The Tepee Buttes showed a 

similar terrigenous component, indicating that the Cretaceous seep sites also incorporated 

siliciclastic material from the surrounding Pierre Shale as they formed within the sediment. The 

Pillar Rock had larger grain sizes ranging from roughly 0.2mm to 0.5mm in width, also 

indicating a subsurface mode of formation that led to incorporation of seafloor material. Similar 

instances were seen in the Tepee Buttes with grains (~0.01-0.2mm width) of siliciclastic material 

noted within the primary micritic fabric, which is direct evidence for a subsurface mode of 

formation (Figure 12). Differences in siliciclastic grain sizes is likely due to the greater degree of 

diagenesis in the Tepee Buttes samples, which would account for the smaller grains. Figure 32 

shows the proposed method of initial formation of the Pillar Rock and Tepee Buttes within the 
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sediment. In this model, 1) seep rock forms subsurface through microbial mediation, 2) 

incorporates siliciclastic material, and 3) is later exhumed above the sediment-water interface 

where it undergoes its initial stage of diagenesis. During this stage, cementation via botryoidal 

calcite begins in pore spaces within the rock created by abandoned conduit and boring holes.  

The more negative carbon isotope signatures of the Pillar Rock and the Tepee Buttes 

rocks confirms a substantial influence from anaerobic methane oxidation in addition to sulfate 

reduction that is occurring closer to the sulfate-methane interface within the sediment. Since both 

the ancient (Tepee Buttes) and modern (Pillar Rock) samples have similar signatures, on the 

most basic level, it seems that these rocks formed at sites that had similar microbially mediated 

origins. Based on the results obtained from this study, it appears that despite the existence of 

distinct decimeter-scale blebs that have likely accreted together to form the Pillar Rock, the 

internal fabric types are mostly constant with little variation in texture - minus the relative 

porosity - and little variation in color. With the blue and white mottled/ finely alternating texture 

as the dominant type, it is likely that this type is precipitated via anaerobic oxidation of methane 

coupled with sulfate reduction. Two values, which are slightly less negative than the other values 

(-34.5 and -33.6) can be explained by the difference in porosity at these sites. The connections 

between slightly less negative δ C13  signatures and the more porous/ highly cemented locations 

on the Pillar Rock samples seems to indicate that these are areas of lower density of bacteria. The 

areas of more coherent cementation that also showed abundant evidence of pyrite framboids 

(framboids are good indicators of the presence of sulfate reducers; Mozer 2010) have more 

negative δ C13  signatures and could be representative of areas that have more bacteria involved in 

the precipitation of carbonate. Alternatively, the areas that are more porous perhaps represent 

slightly older areas of initial, microbially-mediated carbonate growth that was previously much 
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denser but was in a semi-active to active process of being dissolved and perhaps existed closer to 

the sediment-water interface than the sulfate-methane interface. Through being partially 

dissolved, the microbial signatures for these areas could have been slightly overprinted. 

Pores in the Pillar Rock and the Tepee Buttes are also of importance to distinguishing the 

methods of forming seep rock. The large number of conduits in the Pillar Rock suggests that 

there is no central conduit that supplies the hydrocarbons in seep environments. Thus, the 

random occurrence of conduit holes suggests that hydrocarbon seepage is diffuse. Many 

additional pores exist that appear to be from the boring of organisms into the hard substrate. This 

formation is likely between primary and secondary and partially happens post-exhumation. The 

Tepee Buttes rock likely also had these types of holes but the additional diagenesis the rock has 

undergone makes it difficult to distinguish differences between pore spaces. The void spaces that 

have been distinguished in thin section likely were pore spaces that existed in the primary fabric 

and were further dissolved through later diagenetic events.  

 

Diagenesis/ Formation Post-Exhumation 

 Diagenesis is apparent in the existence of allochems and cements that are abundant in the 

Tepee Buttes. Allochems tend to have an adundance of peloids with rims of isopachous cement 

surrounding them as well as bits of the original micrite and are further cemented together with 

later yellow calcite and botryoidal calcite. The occurrence of peloids within the allochems 

suggests that they are not simply reworked bits (intraclasts) of the original fabric type that 

formed via the initial output of hydrocarbons. The allochems likely have a later origin due to the 

observation that they tend to fill in cracks and pore spaces (Figure 20A). The origin of the 

holes/cracks and subsequent peloidal (allochem) infillings is still up for debate. It has been 

suggested (personal communication with Bruce Simonson) that they could be boring holes that 
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caused bits of the original rock material as well as fecal pellets to fill in the spaces post-boring. I 

have not found sufficient evidence to support this idea yet and for the purposes of this paper, 

continue to propose that they are likely former conduit holes that have undergone dissolution 

through diagenetic events, making the voids sufficiently large for allochem material to be 

transported in by marine or other waters.  

 It must also be noted that differences in the abundance of peloids and clams within the 

Pillar Rock versus within the Tepee Buttes rocks also point to rather significant differences in 

environments for the two sites. Pillar Rock samples tended to have only a few occurrences of 

small lucinid bivalve shells, and peloids were also generally smaller and contained within 

specific layers of the micritic material. In contrast, the Tepee Buttes rock often had abundant 

occurrences of lucinid bivalve shells, distinct areas of cemented peloids with isopachous rims 

and areas of loose, “free-floating” peloids. The cemented peloids (allochems) represent a well-

sorted fabric in which individual peloids had sufficient time to develop isopachous rims of 

calcite growth within marine waters. These likely accreted together in a later event and were 

cemented by yellow calcite to form the observed allochem structure that was then later washed 

into a void space. These fabrics could have formed subsurface and from the influence of marine 

waters (indicated by the isopachous rims), but after the initial formation of the micritic matrix 

building block and some diagenetic event that caused dissolution of pore spaces. Later stage 

loose peloids are part of an unsorted section of material and thus must have come after the 

cemented peloidal fabric, indicating a connection to the surface at this time. The differences in 

stages of peloid occurrence also possibly suggests two different stages of allochems, a 

pelbiosparite allochem with looser, well-sorted peloids and the pelmicrite allochem that is well 

cemented with matrix and may have independent peloids (Figure 20).  
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Diagenetic changes were inferred in the Tepee Buttes samples based on textural 

observations and stable isotopes for specific sites within the samples. Three main stages were 

noted: the first stage of diagenesis is the formation of isopachous rim cement and yellow calcite 

cement, the second is a development of sparry calcite within pore spaces, and the third stage is a 

replacement of bivalve shell carbonate with blocky calcite. Several instances of fractured, 

isopachously-rimmed peloids were found that typically had the sparry calcite growth through the 

fracture space (Figure 33), indicating that the spar textures were likely later stage events. It is 

unclear which of the sparry calcite stages happened first but results of luminescence and isotopes 

show that they are separate fabric types. These diagenetic events are possibly explained by a 

variation in source fluid over time or differences in rate of mixing between source fluid and 

seawater/porewater. 

Oxygen isotopic signatures from Butte 326.5 and Butte 710 ranged from -2.9 to -12.2 ‰ 

VPDB. Due to the easily overprinted nature of oxygen isotopic values from the influence of 

reworking through tectonics and subsequent diagenetic events, it is likely that these values were 

more similar to the Pillar Rock when these seep sites were of the same approximate age. Without 

further analysis however, I cannot fully confirm or deny this hypothesis. Another large drawback 

in attempting to make comparisons between these ancient and modern seep sites is that the 

environments of formation for each were slightly different in terms of water depth and 

temperature of formation. The Western Interior Seaway in which the Tepee Buttes seeps formed 

was likely at much shallower and warmer environment than that of the Gulf of Mexico (Pillar 

Rock site) at roughly 4°C. 

 Evidence of significant diagenetic events was noted in the Tepee Buttes rocks by the 

carbon isotopic signatures found connected to specific fabric types. There was a substantial 
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difference between allochem (with yellow calcite) versus micrite fabric versus the sparry calcite. 

Values in the -30 to -32‰ range from the allochem to micrite fabric indicate a substantial 

influence of sulfate reducing microbes and methane-oxidizing Archaea. Values in the -12 to -

24‰ ranges that were noted in the sparry calcite areas indicated no influence of methane-

oxidizing Archaea and a small contribution from sulfate reducing microbes. This indicates that 

the later stage cement growth was likely taking place closer to the sediment surface or possibly 

within the water column and that the seep site was no longer located at the depths within the 

sediment that it had been at the time of the precipitation of the yellow calcite cement (i.e. the first 

stage of cement precipitation). The higher values of carbon and oxygen isotopes recorded for one 

sample of spar indicate a stage of cement growth that is likely associated with a vug filling 

diagenetic event (Spar 1). The less negative carbon isotope values in the -20s represent a 

different diagenetic event that is associated with cement growth in cracks, and void spaces left by 

the dissolution of bivalve shell fragments that were included in the cementation process (Spar 2).  

Amongst the spar samples, a difference in spar growth stages was noted via luminescence 

spectroscopy that confirms stage differences. 

 Significant differences in luminescence between the Gulf of Mexico samples and the 

Tepee Buttes samples are indicative of the constituent minerals in each of these sites, and of the 

difference in diagenesis between the samples. The GOM samples showed extremely weak to no 

luminescence throughout the samples. One definitive conclusion that can be made from the lack 

of luminescence in both rocks, is that the phases of carbonate formation in these rocks are not 

significant or dispersed far enough apart in a temporal scale to exhibit significant differences, i.e. 

the Pillar Rock has not undergone sufficient diagenesis to cause visible luminescence. This 

confirms that the Pillar Rock is still geologically young rock in which carbonate minerals have 
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not undergone recrystallization events during which impurities could be introduced that would 

luminesce.  

        The Tepee Buttes samples, however, did exhibit a fair amount of luminescence. The most 

significant finding from the photographs taken under the CL scope was the confirmed existence 

of two distinct stages of sparry calcite cementation. The first fabric type, noted as Spar 1 (void-

filling spar) shows significant deep red luminescence with some sections exhibiting a banding 

texture of alternating dark and red luminescence within the sparry calcite zone. Other zones, 

referred to as Spar 2 (bivalve filling spar), did not show much luminescence beyond a faint dark 

brown glow. The differences between these two types of spar that otherwise look as though they 

are part of the same phase in cross-polarized light under a normal petrographic microscope, 

indicate that they are actually not part of the same carbonate growth phase. It is far more likely 

that these different cement phases are representative of distinct diagenetic events. I propose that 

Spar 2 represents an infilling from vadose/meteoric waters after the original aragonite shell of the 

bivalve had been dissolved, that led to a relatively quick precipitation of secondary calcite. It is 

unclear whether this event occurred before or after a similar but separate diagenetic event that 

caused the precipitation of the Spar 1 calcite in the void spaces. I can, however, propose that an 

initial phase of cementation with botryoidal growth occurred before both Spar 1 and Spar 2 

cementation events as represented by its distinct carbon isotope signatures, its orientation near 

pyritic framboids, and its appearance as a crosscut fabric type in some areas. 

The pyrite framboids in the Tepee Buttes, noted earlier in the discussion, were also found 

to mostly exist near the edges between the micritic peloidal matrix and the second stage sparry 

calcite (bivalve shell filling; Figure 18 A&B) and the zones of botryoidal calcite void fillings 

(Figure 22 C), perhaps indicating that microbes preferentially accumulate around the perimeters 
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of pore/ void spaces and aid in the nucleation of cements into void spaces, similar to what is 

currently happening in the Pillar Rock. At the interface between these two zones, also existed a 

potential sulfate reduction zone that left evidence of its existence in the form of dark staining that 

appear opaque in crossed polars. This zone, apparent around areas of more nearly circular voids, 

is hypothesized to indicate a former conduit hole that at some point, had hydrocarbon seepage 

running through and that left a rim of staining around the edge. The presence of the 

hydrocarbons could have allowed for the existence of a higher density of microbes such as the 

sulfate reducers that would have precipitated pyritic compounds, leading to the dark appearance 

of the rims in thin section. 

If bacteria/ microbes begin to accrete around areas of weakness in the Pillar Rock matrix, 

then a similar scenario could come into play with these microbes preferentially forming 

nucleation sites around zones of weakness in the young Tepee Buttes. The presence of the 

nucleation sites coupled with possible exhumation and exposure to seawater could have 

produced the conditions needed to begin the precipitation of botryoidal crystal growth (a process 

that can happen fairly rapidly; Mohomad & Tucker, 1992). This seems to perhaps be confirmed 

by the less negative signatures that could have come about by inclusion of seawater in the 

locations sampled. If the growth of these botryoidal crystals proliferated, they could have also 

led to an increase in the creation of fissile cracks in the micritic matrix that could have led to 

further botryoidal crystal growth (acting as positive feedback loop).  

 Ultimately, the Pillar likely underwent exhumation at some time and subsequently rose 

above the sediment water interface where it began to undergo diagenesis through the influence of 

marine waters and was subject to intense boring from associated fauna that benefited from its 

existence above the surface. It is also likely that some amount of excavation by circular currents 
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led to the sediment being washed away from the area surrounding where the Pillar was forming 

subsurface. Due to the size and height of the pillar, however, this process likely could not 

account for the entirety of its exposure above the surface. Therefore, I propose that the Pillar 

began forming within the subsurface and was later exposed through a combination of uplift, 

exhumation, and deep-water current action. Post-exhumation, a negligible amount of 

precipitation of carbonate occurred while diagenetic processes likely took over. I propose that a 

similar initiation of thin-section scale structures that formed in the Gulf of Mexico at the Pillar 

Rock site also occurred within the Western Interior Seaway to begin the formation of the Tepee 

Buttes. After the Laramide Orogenic event that led to the uplift of the surrounding area and the 

phasing-out of the seaway, these seep structures were exposed to seawater, then burial, and 

finally sub-aerially exposed fairly recently. During the period of influence of seawater, there was 

dissolution in the rocks seen as the pore spaces (that have later been filled in with allochems and 

cement). Continued tectonics exposed these seep sites to vadose and meteoric waters that led to a 

general precipitation of various cement types (later stage botryoidal cements and sparry calcite 

cements). 

 

 

CONCLUSION 

 

 In summary, this study reveals several conclusions about hydrocarbon seep rocks: 

 

1. Initial formation of carbonate occurs through the mediation of several different active 

microbes that fix carbon through a series of known chemical reactions. This process 
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typically occurs within the sediment, somewhere between the sulfate-methane 

interface and the sediment-water interface.  

2. The main microbes that help form seep rock (i.e. the Pillar Rock and Tepee Buttes) 

are sulfate reducers and methane-oxidizing Archaea. More in depth isotopic analysis 

needs to be conducted to determine the differences between microbes in the Pillar 

Rock and the Tepee Buttes. 

3. Almost immediately after the formation of the initial micritic matrix building blocks 

within the near surface sediments, cementation by botryoidal calcite begins to occur. 

As the rock is cemented, it may also experience exhumation. Therefore, primary 

formation of the seep rock sediments occurs below the sediment-water interface. 

4. Post-exhumation of the Pillar Rock (though some amount of exhumation likely 

continues to be an active process) the conical seep structure is exposed above the 

sediment-water interface and subsequently undergoes additional diagenesis in the 

form of further cementation and also erosive processes. 

5. The Tepee Butte history includes burial and burial diagenesis not yet experienced by 

the Pillar Rock. 

6. The Buttes underwent diagenesis as they experienced burial, re-exhumation, and 

other tectonic processes and as a result, were exposed to meteoric and vadose waters 

that led to the formation of a variety of different cement types as well as stages of 

cementation. 

7. The rapid tectonics of the Western Interior Seaway as well as the location of 

formation of Buttes rocks within the sediment likely exposed it to a greater degree of 

initial diagenesis from the influences of seawater, and then an additional component 
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of late-stage diagenesis that led to overprinting of signatures found in newly forming 

seep rocks such as the Pillar Rock. Although it is necessary to account for the 

differences in oxygen levels, temperature of seawater, and depth below the surface in 

both sites, it is possible that the Pillar Rock could undergo a similar sequence of 

events and that it represents a roughly similar initial starting point for the formation of 

the Butte seep site rocks. Thus, looking at the sequence of formation from Pillar 

Rocks to Buttes provides a rough approximation of the evolution of a hydrocarbon 

seep site over geologic time.  
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FIGURES AND TABLES 
 
 
 
EXAMPLES OF DOCUMENTED METHANE-SEEP CARBONATES 
Age Location Tectonic Setting Reference 
Recent Gulf of Mexico Continental slope Neureauter & Roberts, 1994 
Recent Oregon Offshore Subduction zone Kulm et al., 1986 
Recent Denmark Offshore Continental shelf Jensen at al., 1992 
Recent North Sea Continental shelf Hovland et al., 1987 
Recent Japan Offshore Subduction zone Sakai et al., 1992 
Recent Blake Ridge Continental shelf Naehr et al., 2000 
Recent Northern California Continental margin Levin et al., 2003 
Miocene Monferrato, Italy Foredeep basin Clari & Martire, 2000 
Oligocene Washington Continental shelf Goedert & Campbell, 1995 
Oligocene Washington Continental shelf Squires, 1995 
Eocene Washington Continental shelf Geodert & Squires, 1990 
Cretaceous Colorado Intracratonic sea Kauffman et al., 1996 
Cretaceous Canadian Arctic Half-graben Beauchamp & Savard, 1992 
Jurassic Alexander Island, Antarctica Forearc basin Kelly et al., 1995 
Proterozoic Yangtze Gorges, South China Cap carbonate Wang et al., 2008 

 
Table 1 Locations of known hydrocarbon seep sites, both modern and ancient. Sites surveyed in 
this study come from the sites in bold from the recent Gulf of Mexico and the Cretaceous Tepee 
Buttes (modified from Shapiro & Fricke, 2002). 
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Figure 1 Photomicrographs of clotted thrombolitic to stromatolitic texture commonly seen in 
microbially produced calcite rock. From Riding’s (2000) study of cyanobacteria mats from 
Greece (left) and Scotland (right).  
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Figure 2 Map of Gulf of Mexico seep sites focused on in this study. Image adapted from 
www.nature.org. 
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Figure 3 Map of known chemosynthetic communities (thought to be associated with 
hydrocarbon seepage) in the Gulf of Mexico. Sites used in this study are from the Central 
Planning Area (map from Minerals Management Service, 2007-2012). 
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Figure 4 Map of the Western United States during the Late Cretaceous period in which the 
majority of the hydrocarbon seep sites formed. As the Western Interior Seaway (depicted on the 
right of the diagram in light blue and centered on Colorado) receded and natural weathering 
occurred over time, the Tepee Buttes were exposed to show the present-day surface. Picture 
acquired from the Wisconsin Geosciences webpage - 
http://www.geoscience.wisc.edu/~chuck/Classes/Mtn_and_Plates/mtns_westernUS.html. 
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Figure 5 Map of the Laramide Orogenic Faults in the Late Cretaceous. The line labelled FR that 
cuts through Colorado refers to the Front Range Uplifts, which are related to tectonics that 
caused the Tepee Buttes formations (red dot). Map from 
http://rmg.geoscienceworld.org/content/36/1/13/F2.expansion.html. 
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Figure 6 (A) Oblique aerial view of the Tepee Buttes, CO. Dome-like structures represent the 
Buttes with high tension electricity poles for scale (Photo by R. Shapiro). (B) Field photograph 
of a typical Butte structure that has been greatly weathered and overgrown with vegetation. 
Rock hammer for scale (Photo by K. Parsons-Hubbard). 
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Figure 7 (A) Underwater photograph taken of the Pillar Rock (OCSG) during the 2006 
expedition in the Gulf of Mexico. This particular site exhibits a tall chimney-like structure with 
abundant faunal attachments including a sponge that is apparent at the bottom of the 
photograph. (B) Cross-section of a sample from the Pillar Rock showing abundance of small 
conduit holes with stained rims.  
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Figure 8 (A) Cross-section photograph of Butte 326.5. (B) Cross-section photograph of Butte 
710.  
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Figure 9 Aerial map of the Tepee Buttes, Boone County Rd cut. Butte 326.5 (represented by the 
red octagon) and is the main focus from this survey site for the Tepee Buttes samples. (Image 
from Google Earth 2014; later edited in Adobe Illustrator). 
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Figure 10 Aerial map of the Tepee Buttes of the North Ranch site (location of Butte 710). 
Image from Google Earth, 2015; later edited in Adobe Illustrator. 
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SAMPLES AND METHODS 

 
Butte # 

Point-
Counts 

Areal 
% 

Acetate 
Peels Staining Digestion SEM CL 

Stable 
Isotopes 

TPB 002  
     

1 slide - 
9 spots 

  

TPB 003 326.5 
2 slides - 
25 spots 

1 slide - 
4 pics yes 3 pics 

 

2 slides 
- 47 

spots 
  

TPB 004 658 
3 slides - 
46 spots 

3 slides 
- 16 
pics 

      

TPB 005 326.5 
2 slides - 
32 spots 

2 slides 
- 11 
pics 

   

1 slide - 
20 

spots 
  

TPB 006 736.5 
3 slides - 
45 spots 

1 slide - 
7 pics yes 

  

2 slides 
- 43 

spots 
  

TPB 007 326.5 
1 slide - 

18 spots 
1 slide - 

7 pics 
  

yes 
 

1 slide 
- 5 

pics 
hsamp – 
 5 spots 

TPB 008 689 
3 slides - 
42 spots 

3 slides 
- 15 
pics 

   

4 slides 
- 62 

spots 
  

TPB 009  

     

3 slides 
- 36 

spots 
  

TPB 014 710 
 

2 slides 
- 16 
pics 

  
yes 

1 slide - 
7 spots 

 

hsamp –  
5 spots 

 
Site 

        

OCSG83106 
Pillar 
Rock 

1 slide - 
33 spots 

1 slide - 
10 pics yes yes yes 

2 slides 
- 25 

spots 

1 slide 
- 4 

pics 
hsamp –  

7 spots 

OCSG90106 
Pillar 
Rock 

2 slides - 
53 spots 

1 slide - 
13 pics 

  
yes 

   
OCSGB3 

Pillar 
Rock 

2 slides - 
23 spots 

1 slide - 
10 pics 

 
yes yes 

1 slide - 
9 spots 

  

GC 272 
Green 

Canyon 
    

yes 

4 slides 
- 64 

spots 
  

GB 425 
Garden 
Banks 

     

3 slide - 
33 

spots 
   

Table 3 Run-down of the methods used for each sample. Tepee Buttes samples are listed first, 
then Gulf of Mexico samples. Samples highlighted in red indicate primary samples used for the 
bulk of this study. 
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Table 4 Charts of the types of matrix and cement from the two study areas. Chart A shows the 
Gulf of Mexico (Pillar Rock) samples which are overwhelmingly composed of micritic peloidal 
matrix. Chart B shows the Tepee Buttes samples, which are fairly evenly split between micrite, 
allochems, and the sparry calcite cement. 
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Pillar Rock 
Terrigenous 
Material 

        

 

PR 9-1-
06 

2PR 9-
1-06 

PR 8-
31-06 

2PR 8-31-
06 

OCSG 
PRB#3 

2OCSG 
PRB#3 

Avg of 
Digested Stained 

%terrigenous 26.67% 17.65% 6.38% 12.82% 18.67% 10.94% 15.52% 12.68% 

%carbonate 73.33% 82.35% 93.62% 87.18% 81.33% 89.06% 84.48% 87.32% 

 
       

 Tepee Buttes 
Terrigenous 
Material 

    

   

 

 

Butte 
710 

Butte 
014 

Butte 
002 

Avg of 
Digested 

 
  

 %terrigenous 17.65% 11.30% 15.08% 14.68%    
 %carbonate 82.35% 88.70% 84.92% 85.32% 

     
 
Table 5 A table of the percentages of terrigenous material seen in each sample (each of the 
Pillar Rock samples was calculated twice with similar sized pieces – indicated by the 2 in front 
of the name). The bulk of data was calculated using the digestion-in-acid method. Stained thin 
section point counting methods revealed similar values in the Pillar Rock samples.  
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Figure 11 (A) Hand sample picture of distinct blocks that make up the Pillar Rock. Taken at 
2.5x Magnification on a Nikon SMZ1500. (B) Thin section photomicrograph of two different 
blocks (1 & 2). Block one includes pyritic dendrites (PyDEN), foraminifera remains (For), and 
small peloids (Pld). Taken at 4x magnification. 
 



 q 

A

B 
Figure 12 (A) Silciclastic grains in Pillar Rock sample, appearing here as the yellow and blue 
grains, (B) Siliciclastic grains in the Tepee Buttes (Butte 710), also yellow and blue. Both 
photomicrographs were taken at 10x magnification in crossed polarized light with the gypsum 
plate inserted.  
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Figure 13 Blue and white alternating mottled texture of the Pillar Rock. 
 
 
 



 s 

 
Figure 14 Photograph of Pillar Rock hand sample showing botryoidal calcite cement between 
blocks. Taken at 2.5x magnification on a Nikon SMZ1500. 
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Figure 15 (A) Photomicrograph of a boring hole (BorHOLE) filled with muddy accumulated 
sediment (MS). (B) Photomicrograph of a conduit (CON), with a concentric rim of staining 
(StnRm), and muddy accumulated sediment filling. Pyritic dendrites are abundant in the micritic 
peloidal matrix at this site. Both images taken at 4x magnification. 
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Sample Area Sample Names 
δ13C (‰ 
VPDB) 

δ18O (‰ 
VPDB) 

OCSG PR Galveston_03 -36.6 1.9 
  PR Galveston_07 -40.4 2.0 
  PR Galveston_04 -34.5 2.2 
  PR Galveston_05 -37.9 2.2 
  PR Galveston_06 -38.2 2.2 
  PR Galveston_01 -37.9 2.2 
  PR Galveston_02 -33.6 2.2 
Tepee Buttes TPB 007_05 -22.5 -10.0 
  TPB 007_04 -23.1 -10.2 
  TPB 007_02 -30.4 -10.6 
  TPB 007_03 -31.0 -11.0 
  TPB 007_01 -30.5 -12.2 
  TPB 014_04 -12.5 -2.9 
  TPB 014_02 -37.1 -5.9 
  TPB 014_01 -32.1 -9.5 
  TPB 014_03 -23.9 -11.3 

 
Table 6 Table of the isotopic data collected for this study, arranged by lowest to highest 
Oxygen Isotopic values. TPB 007 corresponds to Butte 326.5 and TPB 014 corresponds to Butte 
710. 
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Sample Area Sample Names δ13C (‰ VPDB) 
δ18O (‰ 
VPDB) 

OCSG PR Galveston_02 -33.6 2.2 
  PR Galveston_04 -34.5 2.2 
  PR Galveston_03 -36.6 1.9 
  PR Galveston_05 -37.9 2.2 
  PR Galveston_01 -37.9 2.2 
  PR Galveston_06 -38.2 2.2 
  PR Galveston_07 -40.4 2.0 
Tepee Buttes TPB 007_05 -22.5 -10.0 
  TPB 007_04 -23.1 -10.2 
  TPB 007_02 -30.4 -10.6 
  TPB 007_01 -30.5 -12.2 
  TPB 007_03 -31.0 -11.0 
  TPB 014_04 -12.5 -2.9 
  TPB 014_03 -23.9 -11.3 
  TPB 014_01 -32.1 -9.5 
  TPB 014_02 -37.1 -5.9 

 
Table 7 Table of Isotopic data arranged from least to most negative Carbon Isotope signal for 
comparison. TPB 007 corresponds to Butte 326.5 and TPB 014 corresponds to Butte 710. 
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Figure 16 Weight percent iron of Pillar Rock samples obtained using an SEM. Each bar 
represents the average iron value of many spot analyses for each sample.  
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Figure 17 Pyrite framboids found in the (A) Tepee Buttes SEM back-scattered electron image 
with pyrite framboids represented by the brightest sections, (B) Pillar Rock thin section photo of 
a planktonic foraminifera with pyrite framboids within secondary pore spaces, (C) Pillar Rock 
SEM back-scattered electron image, and (D) thin section photograph of Pillar Rock showing the 
banding of Fe-framboids within the micritic matrix. Framboids are taken to be evidence of 
sulfate reduction that takes place in both carbonate rock formations. 
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Figure 18 Thin section photomicrographs showing the boundaries between micritic matrix and 
secondary cement growth. (A) pyritic corrosion/ staining in the form of dendrites that exist 
mainly in between the micrite (MicMtx) and spar 2 from the Tepee Buttes, (B) an additional 
example of pyrite corrosion between micrite and spar 2 from the Tepee Buttes, (C) example of 
corrosion in the Pillar Rock. All photomicrographs were taken at 4x magnification. 
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Figure 19 Two examples of peloidal allochems that are fill components of former pore spaces 
in the Tepee Buttes samples. Both photomicrographs are from Butte 326.5 from the Boone 
Road outcrop and were taken at 4x magnification. 
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Figure 20 (A) Pelbiosparite allochem/ poorly-sorted peloids filling in void space around bivalve 
shell fragment. Photomicrograph is from Butte 326.5, (B) Pelmicrite allochem/ well-sorted 
peloids that are fairly evenly distributed within micritic matrix. Photomicrograph is from Butte 
710. Both photomicrographs were taken at 4x magnification. 
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Figure 21 Loose peloids (Pel) with yellow calcite (YlwCal) and botryoid cement (Boty). 
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Figure 22 Thick Yellow Calcite noting boundary between spar 1 and peloidal allochems. 
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Figure 23 Spar in bivalve shell, extruding into pore space and cross-cutting the micritic peloidal 
matrix (MPM). 
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Figure 24 (A) Peloidal allochems cross cut by a bivalve shell (spar 2). (B) Preferential 
orientation of loose peloids within a bivalve shell fragment. 
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Figure 25 Thin Section photomicrograph in crossed polarized light of Tepee Buttes (sample 
003) showing microbial growth preservation (dark-gray blotches in the matrix).  
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Figure 26 Cathodoluminescence photomicrographs of Tepee Buttes Rocks. Images A, C, and E 
are non-luminescent images of the corresponding CL images B, D, and F, respectively. Note 
that (D) shows two stages of sparry calcite exhibiting different reactions to the 
cathodoluminescence. All photomicrographs are set at 4x magnification. 
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Sample Area Sample Names 
13C (‰ 
VPDB) 

18O (‰ 
VPDB) 

OCSG 
PR 
Galveston_03 -36.6 1.9 

  
PR 
Galveston_07 -40.4 2.0 

  
PR 
Galveston_04 -34.5 2.2 

  
PR 
Galveston_05 -37.9 2.2 

  
PR 
Galveston_06 -38.2 2.2 

  
PR 
Galveston_01 -37.9 2.2 

  
PR 
Galveston_02 -33.6 2.2 

 

Sample Area Sample Names Fabric Type 
13C (‰ 
VPDB) 

18O (‰ 
VPDB) 

Tepee Buttes TPB 007_05 sparry calcite vein -22.5 -10.0 
  TPB 007_04 sparry calcite vein -23.1 -10.2 

  TPB 007_02 
yellow calcite/peloidal 
micrite -30.4 -10.6 

  TPB 007_03 
yellow calcite/peloidal 
micrite -31.0 -11.0 

  TPB 007_01 
yellow calcite/peloidal 
micrite -30.5 -12.2 

  TPB 014_04 sparry calcite vug -12.5 -2.9 
  TPB 014_02 peloidal micrite/allochems -37.1 -5.9 
  TPB 014_01 peloidal micrite/allochems -32.1 -9.5 
  TPB 014_03 sparry calcite vein -23.9 -11.3 

 
Table 8 (OCSG) Isotopic values showing differences with respect to fabric phases for Gulf of 
Mexico samples. Red highlighted samples indicate more heavily cemented (botryoid 
dominated) cement. (Tepee Buttes) Isotopic Values connected with different fabric types for the 
Pillar Rock samples. Note two phases of calcite cement infilling growth indicated by label as 
well as large difference in isotopic signature. TPB 007 corresponds to Butte 326.5 and TPB 014 
corresponds to Butte 710. 
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Figure 27 Weight percent iron of Tepee Buttes sample obtained using an SEM. Each bar 
represents the average iron value of many spot analyses for each sample.  
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Figure 28 SEM Electron Diffraction Spectroscopy data for several Tepee Buttes samples. 
Points of interest analyzed showed an average of 40 to 60 weight percent Barium per sample. 
Each bar represents the average barium value of many spot analyses for each sample. 
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Figure 29 Weight percents of sulfur, strontium, and barium for 25 individual spot analyses from 
three different thin section samples. Average weight percent from all spots was ~15% sulfur, 
~3% strontium, and 51% barium.  
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Figure 30 SEM images of characteristic barite crystal rosette structure from the Garden Banks 
sample (GB425). 
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Figure 31 Typical formation sequence of microbial mats with time. Stage 1 depicts the 
initiation of microbial and bacterial activity. During stage 2, microbial growth occurs and 
sediment particles are trapped in the EPS created by the microbes. Overtime, microbes lead to 
the precipitation of carbonate rock with inclusions of sediment particles. In stage 3, they are 
increasingly covered by more sediment and must continue to growth toward the sediment 
surface, leaving behind laminated like structures. (Figure adapted from http://www.jpb-
imagine.com/Sharjah/3/32histbioter/doc32/1_Hist_Vie_Terre/2121_Stromato.html) 
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Figure 32 Hypothetical cross-sectional view of the upper 1.5m of seafloor showing proposed 
initial formation of the Pillar Rock (A) and the Tepee Buttes (B) within the sediment. Both form 
their fundamental micritic building blocks within the zone of the sulfate-methane interface 
where they are microbially mediated (blue and green circles indicate presence of at least two 
types of microbes). Both structures are later exhumed above the sediment-water interface and 
exposed to seawater that influences the precipitation of cements in pore spaces within the rock. 
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Figure 33 Fractured peloids with a pore space later filled by sparry calcite. 
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