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Average Shortest Path Length

in a Novel Small-World Network

Andrea J. Allen

Oberlin College

(Dated: March 29, 2017)

ABSTRACT

We study a novel model of random graph which exhibits the structural characteristics of the Watts-
Strogatz small-world network. The small-world network is characterized by a high level of local
clustering while also having a relatively small graph diameter. The same behavior that makes the
Watts-Strogatz model behave like this also makes it di�cult to analyze. Our model addresses this
issue, closely mimicking the same structure experimentally while following a constructive process
that makes it easier to analyze mathematically. We present a bound on the average shortest path
length in our new model, which we approach by looking at the two key geometric components.
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I. INTRODUCTION

Structurally complex networks arise in many areas of the natural, social, and technologi-
cal sciences. We can study such networks with random graph models that capture some of
their characteristic properties [8], [13]. In both classical random graph theory and in the
analysis of real-world networks, we are often interested in the number and size of connected
components, the average distance between vertices, and the diameter, the longest finite
distance between two vertices in the graph.The classical Erdős-Rényi random graph, or the
G(n, p(n)), introduces an edge between each pair of its n vertices with uniform probability
p(n). Though the connectivity and the diameter change dramatically over the full range of
p(n), the G(n, p) does not admit a very complex structure within its connected components.

We are interested in random graph models that are highly connected, exhibit local clus-
tering, yet have a relatively small diameter. By clustering, we mean that the neighbors of
a vertex are likely to be connected to each other. Heuristically, the high clustering and low
diameter make it easy to reach most other vertices from any starting vertex in the graph.
We say networks like these demonstrate the “small-world” phenomenon. Many real-world
networks have been shown to be small-world-like such as social networks, where vertices are
people and edges exist between people who are acquainted, the internet, and the citation
network of mathematical research papers, to name a few. Several random graph models
that mimic the small-world phenomenon have been introduced and studied, namely the
Watts-Strogatz [13] and the Newman-Watts [9], [10] models. Both of these models are
based on a configuration of vertices into a k-regular ring lattice, where each vertex has
an edge that connects it to its k nearest consecutive vertices (mod n). Then a set of ran-
dom edges is introduced in some way that reduces average shortest path length and diameter.

In this paper, we introduce a novel random graph model we call the railroad model that is
another variation of a small-world network. We will study the average shortest path length
in the railroad model in the context of prior work. We use classical approaches to the theory
of random graphs from [11], [6], [2], [4], and interpolate original results with established
results on the diameter of the G(n, p) from [12], using the railroad model as a lens through
which to study the same properties in the Watts-Strogatz model, about which less is known.

In the railroad model we begin with n2 vertices (for convenience later) configured into a
regular ring-lattice structure, and then select a subset of 2n vertices we will call train stations.
We then introduce asymptotically �n random edges between the train stations which we will
call rail lines or shortcuts. After we add the shortcuts, we remove the same number of edges
from the outer lattice to maintain the original number of edges in the graph. This way, the
railroad model has asymptotically the same number of edges as in the Watts-Strogatz regime
for the same edge-density p(n), so that the models are more comparable. We focus on the
range of p(n) where p = �/(2n), � > 1 fixed, and analyze the average path length in the
railroad model, leading toward our conjectured main result.
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A. Main Conjecture

Let G⇤ be a graph on n2 vertices drawn from the railroad random graph model. Let L
be the average shortest path length over all pairs of vertices in G⇤. We conjecture that the
expected value of L is given by

E[L(G⇤)]  1

2
n log n + O(log

�

2n). (1)

While we could write the above result as O(1
2

n log n), without the extra O(log
�

2n) term,
we choose to give the secondary term specifically to look at the intricacies that come from
the two geometric components of the railroad model’s structure.

In Section 2, we introduce the existing random graph models that are relevant so their
results may be referenced later, and then introduce the railroad model in more detail and
explore the behavior that motivates the main conjecture in (1), and in Section 3 we give
the detailed proofs to support (1). Along the way, we observe both experimentally and
analytically that the average path length in the railroad model is very close to that of the
Watts-Strogatz, supporting our use of the railroad model as a simpler method to study the
same network properties.

II. THE RAILROAD MODEL

A. Relevant Random Graph Models

1. The Erdős-Rényi random graph

The Erdős-Rényi is the simplest of random graph models, We will refer to the G
n,p

and
the Erdős-Rényi network interchangeably, where the classical results can be found in [7],
[4] and [11]. In the G

(

n, p), for each of the
�
n

2

�
pairs of vertices, an edge between them is

present independently with probability p(n), the edge density. Consequently, the expected
number of edges in the G

n,p

is p
�
n

2

�
= ⇥(pn2/2) for large n.

The edge density p(n) can take on a range of values, either staying fixed or varying with n.
p(n) determines fundamental characteristics of the graph such as the number and structure
of connected components and the diameter. In the range where p = �/n, � fixed, classical
results show the G

n,p

undergoes a phase transition at � = 1. When � < 1, the G
n,p

has
mostly small disconnected components. When � > 1, with probability going to 1 there is a
giant component containing most of the vertices, with all other components having O(log n)
vertices. The second variant of the Erdős-Rényi random graph model has a fixed number of
edges m introduced in the graph. The results on the G

n,m

are parallel to those of the G
n,p

,
but the proofs are slightly more involved to account for the lack of total independence.
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In this paper we will focus on the giant component range of the the G(n, p), where
p(n) = �/n, � > 1 fixed, for our investigation of the railroad model. We use the result from
[12] that in this range, the diameter of the G

n,p

is ⇥(log
�

n).

The disadvantage of the G(n, p) is that the total independence that makes simple analysis
possible is also responsible for relatively simple network structure. In the �/n regime, the
G

n,p

is locally tree-like; the existence of cycles of small length is rare. Various random graph
models have since been introduced to mimic the small-world phenomenon, though we will
have to give up the computational simplicity when we move toward modeling more complex
structures.

2. The Watts-Strogatz small-world network

The first small-world network model was introduced in [13], motivated by an interest
in introducing more complex structure into random graphs to reflect natural phenomena
in biological, technological, and social networks. These real-world networks exhibit high
clustering among local neighborhoods of vertices, yet short average path length globally.
The Watts-Strogatz (WS) random graph follows a constructive process where we begin with
n vertices arranged in a thickened cycle we define bellow, and randomness is introduced by
“rewiring” some of those edges, keeping one end of each edge fixed and redirecting the other
end with probability p(n) to a randomly chosen vertex somewhere else in the ring. The
resulting graph maintains most of its local clustering, while introducing “shortcuts” that
dramatically reduce the average path length and diameter.

Definition. We define a thickened cycle with thickness k to be a configuration of n
vertices where the vertex set is arranged in a circle, and each vertex v

i

is connected to its
nearest k neighbors on either side, {v

i�k

, . . . , v
i�1

, v
i+1

, . . . v
i+k

}, mod n.

FIG. 1. A thickened cycle with k = 3.

To construct a graph W from the Watts-Strogatz model, we begin with n vertices con-
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figured into a thickened cycle with thickness k so there are exactly kn edges. For each of
the kn edges, we leave one end fixed, and with probability p(n) “rewire” the other end to a
di↵erent vertex chosen at random from the other n� 2 vertices in W to form shortcuts. We
expect that there will be pkn shortcuts in W , included in the total number of edges kn.

The Watts-Strogatz model captures the small-world phenomena, but the process is dif-
ficult to analyze–we lose the computational simplicity by following a rewiring procedure
rather than introducing shortcuts independently. As a result, much of the work on small-
world networks has looked at variants that are easier to analyze, such as the Newman-Watts
model.

3. The Newman-Watts model

The Newman-Watts random graph model studied in [9],[10], [1] begins with the same
thickened cycle as a base network, but instead of rewiring edges, superimposes a G

n,p

on top
of the cycle, where each pair of vertices that is not already connected in the cycle has an
edge between them independently with probability p. The Newman-Watts also exhibits the
small-world properties of high clustering and low average path length, yet not as di�cult to
analyze as the Watts-Strogatz because it introduces its random edges by a more independent
process. It also is related to the cycle with a random matching, which has been studied
extensively in [5].

A key di↵erence stands out between the Newman-Watts and the Watts-Strogatz, because
of the heavy amount of random edges added in the superimposed G(n, p), the Newman-
Watts has considerably more long-range edges than the Watts-Strogatz. Recall that the
G

n,p

has ⇥(pn2/2) edges, and the base thickened cycle has kn edges. Thus, a graph G in
the Newman-Watts model with p = �/n has ⇥(�n/2) + kn edges while the Watts-Strogatz
in the same p(n) range has exactly kn.

B. Constructing the Railroad Random Graph

We are interested in the result that the Watts-Strogatz admits small-world structure
without having to introduce too many extra shortcuts, and just by rewiring only a handful
of edges taken from the outer lattice. This motivates our investigation of the railroad model
that mimics the small-world structure exhibited by the Watts-Strogatz more closely than
the Newman-Watts does, while still being easier to analyze.

For convenience later, we will construct a graph G⇤ from the railroad model on n2 vertices,
configured into a baseline thickened cycle. In this paper, we focus on a thickness of k = 2,
and will eliminate k from our notation unless it is necessary for clarity.
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We construct a graph G⇤ from the railroad model as follows. Let G be the thickened
cycle of n2 vertices and k = 2. Note that G has 2n2 edges and we will maintain this amount
in G⇤. From the vertex set of G, select a random subset T of 2n distinct vertices we will call
train stations. For every pair of train stations v, v0 in T , introduce an edge with probability
�/2n, with � > 1 fixed. An edge is a railline if both its ends are in T . Call the resulting
graph G0, the thickened cycle G combined with the Erdős-Rényi graph on T .

The expected number of raillines is given by
✓

2n

2

◆
�

2n
⇡ (2n)2

2

�

2n
= �n,

asymptotically, as n ! 1.

To keep the number of edges at 2n2, we select a subset of b�nc edges in the thickened
cycle G to remove. Remove these, and call this resulting graph G⇤. We prove in section 3.1
that in this range of p(n), the probability that the thickened cycle will remain connected
after we remove edges goes to 1.

FIG. 2. The stages of the railroad model, G, G0, and G⇤ from left to right, with dn2e = 50, 2n = 14
train stations in blue, rail line shortcuts introduced with probability �/2n = .15. We cannot see
the deleted edges from the outer cycle, but they are there.

Thus, G⇤ approximately keeps the same number 2n2 edges as the thickened cycle, with �n
of them being randomized raillines that run through the interior of the graph. Recall that in
the Watts-Strogatz, if we were to construct a graph on n2 vertices with p = �/(2n), we also
expect to see pkn2 = �n shortcuts. Notice that the construction process of G⇤ consists of
two rounds of independent edges introduction and deletion processes, in contrast to the more
analytically complicated rewiring process of the Watts-Strogatz, yet the resulting models still
appear to “look” similar, see Fig. 3.

The key di↵erence between the railroad model and the Watts-Strogatz is the lack of
consistency in the distribution of the endpoints of the randomized edges. In the Watts-
Strogatz, edges are essentially deleted from G and added to G0 in one go—one end of each

6



FIG. 3. Left: instance of the railroad model, right: an instance of the Watts-Strogatz, both with
n = 50, k = 2, � = 1.1 ) p ⇡ .08.

edge remains fixed, and the other end is rewired with probability �/2n. Whereas, in the
trains model, an edge may be introduced between two vertices t, t0 2 T , but all of t and t0s
neighbors may remain in place in the outer cycle, if edges are removed elsewhere to reach
the quota. Nonetheless, this di↵erence should not have a significant e↵ect on the behavior
of the railroad model as a comparable alternative to the Watts-Strogatz.

Consider a vertex v in the Watts-Strogatz random graph, supposing that all the rewired
edges are firmly in place. We know there are about �n rewired edges. The probability that
v is on either end of one of these rewired edges is 2(�n)/n2 = 2�/n, the 2 is there because
v could be either end. Let v0 be in a graph in the railroad model. The probability that
v0 is the end of a shortcut is first directly related to the probability that v0 2 T , which
is asymptotically 2/n, and then v0 has on average � edges to other vertices in T . So, the
probability that v0 is the end of one or more shortcuts is also 2�/n, providing the heuristic
assurance that the models are actually comparable.

C. Experimental Results

We support our discussion of the similarities between the two models with numerical
simulations in the same range of p(n) = �/2n, with � > 1 fixed.

1. Methods:

For the Watts-Strogatz simulations, we configure a thickened cycle, then for each edge
we check if it has already been given the chance to rewire, if not, we select a non-neighbor
vertex uniformly from the vertex set and rewire the edge there with probability �/2n.
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FIG. 4. Comparing the Comparative model (4) to the Watts-Strogatz (+) where each marker is
the average of 50 simulations. Each color corresponds to the same value of � for both the + and
4 models.
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In the railroad model, we follow the heuristic honestly, picking 2n train station vertices
independently without replacement, then place an edge between each pair of stations with
probability �/2n. We then consider each edge in the outer cycle and remove it with proba-
bility �/2n until b�nc edges have been removed.

The + markers are the results of the Watts-Strogatz simulations, the 4 markers are the
railroad simulations. We keep � small to correspond to our range of n. For each instance
of the graph, we compute the average path length (and diameter) in the entire graph using
the Python NetworkX module. Each symbol represents the mean of those results over 50
simulated graph instances.

D. Main Conjecture on the Average Shortest Path Length

Now that we understand the structure and behavior of the railroad model, we motivate
our main conjecture on the average shortest path length with a geometric argument. Say we
are interested in finding the shortest distance between some two vertices, v, v0 2 G⇤, selected
arbitrarily. Say we begin at v and want to travel to v0. Naturally, we would check to see if
v is a train station, i.e. if v 2 T , which would give us direct access to shortcuts in the rail
lines component of the graph. If v is not in T , we would walk along the outer cycle until we
reach such a train station, call it w. Simultaneously, we check if v0 2 T ; again, if v0 is not,
we find the nearest train station w0 2 T to v0 along the outer cycle.

In this way, the major part of the traversal is before and after utilizing the rail lines,
traveling along the outer cycle. Since the train station vertices are distributed randomly
around the lattice, we seek to bound the maximum gap between such vertices, which will
naturally also bound the maximum graph distance from any vertex to the nearest train
station. Since we walk at most half the maximum distance between train stations from v to
w and also from v0 to w0, our bound is honestly given by the expected maximum distance
between train stations. The smaller order term in our bound is the average length of a
route from one train station to another. Thus, our bound is expressed in terms of two terms
bounding the two structural components of the railroad model.

Main Conjecture.

Let G⇤ be a random graph in the railroad model with n2 vertices, 2n train stations, and
edge-density p = �/2n. Let L(G⇤) be the average distance between any two distinct vertices
in G⇤. We conjecture that the expected value of L(G⇤) is

EL(G⇤)  1

2
n log n + O(log

�

2n).

The average distance between vertices in a thickened k-cycle, k = 2, with n2 vertices
is n2/8 since we have most of our span-2 edges in place. With our train stations in place,
we can cut this distance down. We do so by investigating the spacing of the train station
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vertices along the outer cycle, and find that the probability that two train stations are more
than 1

2

n log n apart goes to 0 as n ! 1. We prove our bound in section 3.2.

We note that we make a simplifying assumption in this regime where k = 2. We approach
bounding the maximum gap between train stations by bounding the number of consecutive
vertices between one train station and the next. To formalize the final bound, we need
to bound the graph distance, which will be bounded below by half of what we find, since
most but not all of the span-2 edges will be in place in the thickened cycle even after
deleting �n edges. We make this assumption safely since we prove in Section 3.1 that the
cycle will not become disconnected. Consequently, the maximum number of consecutive
vertices between train stations will be at most twice the graph distance we are interested
in, not a↵ecting the asymptotics by more than a factor of 2. The question is more interest-
ing for k > 2, which we do not study in this paper but we keep in mind for future exploration.

III. PROOFS OF THE MAIN RESULT

In this section we give the proofs of the components that work toward the main conjecture
in (1) and Section 2.4.

A. Keeping the Outer Cycle Connected

Recall that a thickened cycle with thickness k is a configuration of n vertices where and
each vertex v

i

is connected to its nearest k neighbors on either side, {v
i�k

, . . . , v
i�1

, v
i+1

, . . . v
i+k

},
mod n. All the models we discussed so far have been based on the thickened cycle structure.
We present a range of p(n) for which, as n ! 1, the probability that the cycle becomes
disconnected during any of the rewiring (for the Watts-Strogatz) or edge deletion (in the
railroad) processes goes to 0. For the following results, we consider an edge to be removed
from the cycle if it has been rewired. Say a thickened cycle has been pruned if it has had a
nonempty subset of its edges removed.

Definition. We say a pruned thickened k-cycle is intact if there exists a cycle of length
at least n/k, where we can list the vertices in monotonic order mod n.

Definition. Say that two vertices v
i

and v
j

are separated if there is no path from v
i

to
v
j

of length  n/(2k) using edges from the original outer k-cycle.

Theorem III.1. Let W be a WS graph with n nodes and rewiring probability p. Let m =
k(k+1)

2

. Then as long as p = o(n1/m), the outer thickened k-cycle will remain intact with
probability going to 1 as n ! 1.

We prove the theorem using the following key lemmas:
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Lemma III.2. In order to break the k-cycle, an edge between two consecutive vertices v
i

and v
i+1

must be removed.

In order to separate a pair of vertices v
i

and v
k

we need to remove edges from the graph
so that there is no short path from v

i

to v
k

. In order to do so, there must be some j such
that i  j < j + 1  k where we remove the edge between v

j

and v
j+1

.

Lemma III.3. There is a “critical cut” to separate any two consecutive vertices by removing
the minimum number of edges possible, and the that minimum is given by m(k) = k(k+1)

2

where k is the thickness of the cycle.

Proof. We proceed by induction on k. When k = 1, we can separate v
1

and v
2

if and
only if we remove the single edge (v

1

, v
2

). This is the critical cut, trivially, and satisfies
k(k + 1)/2 = 1.

We motivate the induction by showing what happens when k = 2. Again let us look at
separating v

1

and v
2

. As in the case of a k = 1 cycle, we must remove the edge between v
1

and v
2

. From the geometry, it is clear that we must also remove the two span-2 edges that
cross over the imaginary midline between v

1

and v
2

, the edges (v
0

, v
2

) and (v
1

, v
3

). Notice
that each edge corresponds to one of the two equivalence class mod 2. This is the simplest
way we can achieve separating v

1

and v
2

, so the critical cut has 3 edges.

We continue with the induction. Assume up to k � 1 that the number of edges in the
critical cut for a k� 1 cycle is m(k� 1) = (k� 1)k/2. Consider the k-cycle. We can build it
by adding span-k edges to a k�1 cycle. To separate v

1

and v
2

again with the fewest number
of edges, we utilize the critical cut from the k � 1 cycle, which by virtue of the inductive
process is the minimum. Now we address the span-k edges. As in the example with k = 2,
the critical cut requires that we remove the k closest span-k edges that “cross over” the
imaginary midline between v

1

and v
2

. There are k such edges, each of which contain two
representatives of each equivalence class mod k.

FIG. 5. We add span-3 edges to a k = 2 thickened cycle to form a k = 3 thickened cycle.
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Thus, the number of edges in the critical cut for a k cycle is

m(k � 1) + k =
(k � 1)k

2
+ k =

k�1X

j=1

j + k =
kX

j=1

j =
k(k + 1)

2
= m(k)

as desired.

We return to the event that v
i

and v
i+1

, arbitrary, become separated, which will involve
removing enough edges to partition the segment of the cycle where v

i

and v
i+1

will be sepa-
rated. We set up a regime under which we can analyze the potential cycle breaking events.

Picture a segment of the k-thickened cycle like this. For each integer j 2 {0, . . . k}, j is
a representative of the equivalence class of the integers mod k. Depict the segment of the
thickened cycle by placing the vertices whose indices are 0 (mod k) along a top row. In the
second row, we arrange the vertices who are 1 (mod k), and in the third row the vertices in
the 2 (mod k) class, etc., until the bottom row consists of the vertices in the k � 1 (mod k)
class. Then configure the edges. The resulting structure should resemble a regular lattice
and is isomorphic to a segment of the thickened cycle.

v
0

�� �� v
k

v
2k

v
1

v
k+1

v
2k+1

. . . . . . . . .
v
k�1

v
2k�1

�� �� v
3k�1

The edges should be configured according to the regular thickened k-cycle process.

We fix two anchor edges to remove, both belong to the span-k edge class. We fix the
“top” span-k edge, between v

0

and v
k

, and require that we remove that edge. In the critical
cut, we would also remove the span-k edge on the bottom, between the vertices (v

k�1

, v
2k�1

),
in the k � 1 (mod k) modulus class. To investigate the other possible partitions other than
the critical cut, let r a positive integer be the “displacement” value of the k � 1 (mod k)
edge, so that for each r, we partition the segment under the condition that we remove the
edge between the vertices of index (0, k) (the top span-k edge) and the edge between the
vertices of index ((k � 1 + kr), (k � 1 + kr + k)) (the displaced bottom edge in the figure),
and we do not remove any other edges whose vertices are in the bottom row, the k� 1 (mod
k) equivalence class.

In order to partition v
i

and v
i+1

, our vertices of interest, while adhering to these conditions,
we must remove at least kr additional edges, in order to “snag” the r-displaced edge. When
selecting these extra kr edges to remove, notice that there are k � 2 “rows” of vertices
between the fixed edge and the r-displaced edge, and r columns of vertices. As we cut edges,
for each of these r(k� 2) edges we can either traverse “over” or “under” the vertex. Letting
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A
v0,r be the event that the lattice is broken at v

1

and v
2

with our r-displaced edge, we have
that

P (A
v0,r)  2(k�2)rpkr,

since there are 2 states (over or under) for each vertex in the middle rows and each additional
edge is removed with probability p. With the symmetry of the cycle, we consider all vertices
v
0

through v
n

over all displacements r as n grows. Then we have

lim
n!1

P
 
[

v,r

A
vi,r

!
 npm

X

r�0

(2k�2pk)r ! npm

(1 � (2k�2pk)
, (2)

since the sum is a convergent geometric series (with p < 1/2), and approaches 0 as long as
p = o(n1/m).

Hence, with the probability of the event that the outer cycle remains intact approaches 1
as n ! 1, i.e.

lim
n!1

P
 
[

v,r

A
vi,r

!
C

! 1.

This proves Theorem 3.1. Next we prove and analogous result for removing a specified
number of edges, as we do in the railroad model.

Lemma III.4. For a graph G
k,p

drawn from the railroad model with n vertices and k = 2,
as long as p = o(n1/3), the outer lattice will remain intact with high probability.

Note: Be aware that in the statement and proof of this lemma we consider the thickened
cycle in the railroad model with n vertices, in contrast to the rest of the paper we treat the
railroad model as having n2.

Proof. Consider a vertex v
0

. Recall from Lemma 3.2 that in order to separate v
0

and v
k

we
must separate two consecutive vertices, v

j

and v
j+1

, so WLOG let us look at separating v
1

and v
2

.
Recall further that the critical cut, and thus the one that requires the least edges, to

separate v
1

and v
2

consists of 3 edges; the set {e
02

, e
12

, e
13

}. As in the proof of theorem 3.1,
let r be the displacement value of the 1 mod 2 edge, where we consider additional separations
that involve cutting both e

02

and the edge between v
1+2r

and v
3+2r

. As before, in order to
separate v

1

and v
2

we would need at least an additional 2r edges to be deleted in order to
“snag” the displaced edge.

Let A
v0,r be the event that a separation will occur of v

1

and v
2

under the condition that
we must delete e

02

and e
(1+2r)(3+2r)

, where r is the displacement value. Then, over all vertices
v
0

and all displacements r, and the symmetry of the construction if we were to fix the 1 mod
2 edges and displace the 0 mod 2 edges by r instead, we have
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P
 
[

v,r

A
v,r

!
 n

X

r�0

✓
2kn � (3 + 2r)

b2pnc � (3 + 2r)

◆
1�

2kn

b2pnc

� (3)

as n grows. The first binomial coe�cient enumerates the number of ways to select the
b2pnc edges to remove including the critical simple cut {e

02

, e
12

, e
13

} and the additional
2r intermediate edges that would need to be cut to satisfy the conditions, and the second
binomial coe�cient enumerates the total possible ways to select a subset of b2pnc edges. So
each term of the sum encodes the probability of selecting one of the subsets of edges that
will result in a separation according to the displacement criteria.

We see that

�
2kn�(3+2r)

b2pnc�(3+2r)

�
�

2kn

b2pnc

� =
(2kn � (3 + 2r))!

(b2pnc � (3 + 2r))!(2kn � b2pnc)!
b2pnc!(2kn � b2pnc)!

(2kn)!
(4)

which approaches

(2pn)3+2r

(2kn)3+2r

=
p3+2r

k3+2r

,

as n ! 1. Thus we have

lim
n!1

P
 
[

v,r

A
v,r

!
 n

X

r�0

(p/k)3+2r ⇠ np3

k3

X

r�0

⇥
(p/k)2

⇤
r

=
np3

k3

1

1 � (p/k)2
, (5)

since the sum is a convergent geometric series. Hence, as long as np3 ! 0 as n ! 1, we will
have the probability of the lattice becoming disconnected as the result of some two vertices
being separated bounded above as

lim
n!1

P
 
[

v,r

A
v,r

!
 np3

k3(1 � (p/k)2)
! 0.

Applying this to a graph drawn from the railroad model with n2 vertices, k = 2, and
p = �/2n, we check that we meet the criteria. We have

p3(n2) =
�

2n

3

n2 =
�3

8n
! 0

as n ! 1, so the probability that the pruned thickened cycle remains intact goes to 1.
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B. Spacing the Train Stations Along the Outer Cycle

In this section we work toward the lead term of the bound in the main conjecture. We
are interested in bounding the maximum gap M between train station vertices v 2 T along
the thickened cycle, where M = max{d(v

i

, v
j

) : v
i

, v
j

2 V (H), j = i + 1}. We will prove
that with high probability, the length of the maximum gap will be close to 1

2

n log n. We
conjecture but do not prove that this result extends to ensuring that the average maximum
gap EM = ⇥(1

2

n log n), which is what we would like for our main result.

Recall that we select 2n vertices for the set of train stations T from the original n2

vertices. Let X
1

, . . . X
2n

be random variables where each X
i

is the length of the gap between
the ith vertex and the i � 1st vertex that is chosen in the set of train stations T . Let
M = max{X

1

, . . . X
2n

}, the maximum gap. For large n, we treat the selection process as
considering each vertex and independently adding it to T with probability 2/n, so each
X

i

⇠ geom(2/n). Letting k be the length of a gap between consecutive vertices in T , we
have P(X

i

> k) = (1 � 2

n

)k. We are interested in the maximum gap M so we look at

P(M  k) = (P (X
1

\ . . . X
2n

)  k) (6)

= (P (X
1

 k))2n = (1 � P (X
1

> k))2n (7)

=

 
1 �

✓
1 � 2

n

◆
k

!
2n

. (8)

Lemma III.5. Letting k = 1

2

n log n + cn

2

, then

P(M  k) = F (c),

as n ! 1 with
F (c) = exp (�2e�c)

so F (c) ! 0 with c ! �1 and F (c) ! 1 as c ! 1.

Proof. As n ! 1,

lim
n!1

P(M  k) = lim
n!1

 
1 �

✓
1 � 2

n

◆ 1
2n logn+

cn
2

!
2n

(9)

= lim
n!1

 
1 �

✓
1 � 2

n

◆
n

1
2 logn

✓
1 � 2

n

◆
n

c
2

!
2n

(10)

= lim
n!1

⇣
1 � exp (�2)

1
2 logn exp (�2)

c
2

⌘
2n

(11)

= lim
n!1

��
1 � n�1 exp (�c)

�
n

�
2

= exp (2e�c). (12)
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We state the next lemma and our ideal application, proving the lemma and discussing
the application, without proof.

Lemma III.6. For any ✏ > 0,

P(M /2 (
1

2
� ✏)n log n, (

1

2
+ ✏)n log n ! 0.

Application We wish to show that, also for any ✏ > 0, there exists an N for which, for
n � N ,

(
1

2
� ✏)n log n < E[M ] < (

1

2
+ ✏)n log n.

Proof. For the first part of the lemma, we have P(M /2 (1
2

� ✏)n log n, (1
2

+ ✏)n log n)

= P(M > (
1

2
+ ✏)n log n) + P(M  1

2
� ✏)n log n) (13)

= 1 � P(M  (
1

2
+ ✏)n log n) + P(M  1

2
� ✏)n log n) (14)

= 1 � F (c
1

) + F (c
2

) (15)

where c
1

= 2✏ log n and c
2

= �2✏ log n. Then as n tends to 1 we have c
1

! 1 and c
2

! �1
as n ! 1, so

lim
n!1

1 � F (c
1

) + F (c
2

) (16)

= lim
n!1

1 � exp (�2e�2✏ logn) + exp (�2e2✏ logn) (17)

= lim
n!1

1 � exp (�2n�2✏) + exp (�2n2✏) ! 1 � e0 = 0. (18)

So P(M /2 (1
2

� ✏)n log n, (1
2

+ ✏)n log n) ! 0.

To actually prove the application, we need a large deviation bound on the tail probabilities
in Lemma 3.5.

C. Neighborhood Growth of the Train Stations

The O(log
�

2n) component in the bound on the average distance between vertices in the
railroad model is obtained from the expected distance between the train stations using the
rail lines. A sharper result is given in [12], and we prove part of it here. We bound the
probability that a particular pair of train stations will be more than distance log

�

2n apart
using the railline shortcuts.

Recall that with the probability of an edge given by p = �/2n, � > 1 a constant, the
Erdős-Rényi random graph on T has a giant connected component with high probability [7],
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[4]. We treat the growth of a train station’s neighborhood in the Erdős-Rényi subgraph on
T like a branching process in the early stages of growth, following [ [? ], [? ] ].

Let v
0

2 T be an arbitrary train station. For each of the other 2n � 1 train stations,
we introduce an edge with probability �/2n. The expected number of neighboring train
stations of v

0

is asymptotically �. Simultaneously let v
1

2 T be another train station, its
neighborhood also growing the same way. Say that v

0

and v
1

are in the zeroeth generation
and their neighboring stations are in the first generation. For the second generation, we
introduce edges spawning from each train station in the first generation to any of the 2n
train stations that have not been considered yet–since the edge probability is small and we
are still in the early growth stages, asymptotically each train station in the first generation
reaches � others. In this way, for su�ciently small k, the size of the kth generation of v

0

(and that of v
1

) is asymptotically �k.

Let S
k

, S 0
k

be the set of vertices reachable in exactly k steps from v
0

(v
1

). As stated
above, E|S

k

| ⇡ �k.

Lemma III.7. Let v, v0 2 T be fixed. Let S
k

and S 0
k

be the sets of vertices reachable from v
and v0 respectively at distance exactly k. Let A

v,v

0 be defined as the event that S
k

\ S 0
k

6= ;.
Then after step k = 1

2

log 2n/ log �,

P
�
A

v,v

0
�
 e�1

and
P (A

v,v

0) � 1 � e�1.

Proof. With k = 1

2

log 2n/ log �, the expected sizes of S
k

and S 0
k

will both be ⇡ �k =
p

2n.
So, the event A

v,v

0 can be equivalently described as the event that S
k

and S 0
k

are disjoint,
having both of their

p
2n elements being chosen from 2n vertices with no vertex being allowed

to be selected for both S
k

and S 0
k

. This can be expressed in terms of binomial coe�cients,

where, supposing we have already chosen the
p

2n vertices in S
k

, we have
�
2n�

p
2np

2n

�
ways we

can choose S 0
k

so that S
k

\ S 0
k

= ;. Hence, as n ! 1,

P (S
k

\ S 0
k

= ;) =

�
2n�

p
2np

2n

�
�

2np
2n

� ! e�1, (19)

By the binomial bound limit shown in Lemma .8 in the appendix.
Thus, we expect that after step k = 1

2

log 2n/ log � that we have the neighborhoods of
vertices reachable by v, v0 begin to overlap with probability going to 1� e�1, so the expected
graph distance from v to v0 is twice the number of steps we took from both train stations,
21

2

log 2n/ log � = log
�

2n with probability 1 � exp (�1).

From here, we expect that the average length of a rail route along edges in the Erdős-
Rényi graph on T is O(log

�

2n). For a sharper result, see [12]. They advance prior results
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on the diameter in this range of p(n) and show that for p = �/n, � > 1 fixed, the diameter
of the largest connected component is

D(G
n,�/n

) =
log n

log �
+ 2

log n

log(1/�⇤)
+ O

p

(1)

where �⇤ < 1 satisfies �e�� = �⇤e��

⇤
and O

p

(1) is an additive corrective term that is
bounded in probability as n ! 1.

CONCLUSION AND FURTHER WORK

Our approach to bounding the average shortest path length in the railroad model was
based on bounding the quantity of interest separately in the two main geometric components
of the graph: the pruned thickened cycle and the set of �n rail line shortcuts configured like
a G(2n, p(n)) with p(n) = �/2n. Bifurcating the approach in this way makes some simpli-
fying assumptions about the structure of the graph. A more rigorous approach following
methods from [12] could get us a sharper result on the diameter of the rail line shortcuts.
Alternatively, we might approach the construction of the railroad model as a multi-type
branching process as in [3], where we introduce edges of both types simultaneously from
each vertex, the thick cycle edges in addition to the shortcuts, according to their respective
probabilities.

With a sharper result on the average shortest path length in the railroad model, we are
also interested in generalizing the model and its results to general k > 2. With a general k,
we also become more interested in what the typical length of a traversal around the outer
cycle is like once edges are removed. We believe the behavior of the outer cycle can be
approached as a tiling problem, where for each path from one train station to another we
have access to edges of length 1 up through k with the probability that those edges have not
been removed. Ultimately, with a sharper result on the average path length, and a fuller un-
derstanding of the behavior of the outer cycle for general k, we are in a position to extend our
results from the railroad model to a result on the Watts-Strogatz small-world characteristics.

APPENDIX

Lemma .8. The binomial quotient bound limit.

As n ! 1, �
n

2�an

bn

�
�
n

2

bn

� ! e�ab.

Proof. Upper bound:
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Expanding the binomials and dividing everything by n2 after simplifying we have

(n2 � an)!(n2 � bn)!

(n2)!(n2 � an � bn)!
(20)

=
(n2 � bn)(n2 � bn � 1)(n2 � bn � 2) . . . (n2 � bn � (an � 1))

(n2)(n2 � 1)(n2 � 2) . . . (n2 � (an � 1))
(21)

=
(1 � b

n

)(1 � b

n

� 1

n

2 )(1 � b

n

� 2

n

2 ) . . . (1 � b

n

� (an�1)

n

2 )

(1 � 1

n

2 )(1 � 2

n

2 ) . . . (1 � (an�1)

n

2 )
. (22)

We apply the left and right inequalities e�x(1+x)  1� x  e�x for x  1

2

to equation (3),
so that equation (3) is


exp (� b

n

) exp (� b

n

� 1

n

2 ) exp (� b

n

� 2

n

2 ) . . . exp (� b

n

� an�1

n

2 )

exp (� 1

n

2 (1 + 1

n

2 )) exp (� 2

n

2 (1 + 2

n

2 )) . . . exp (�an�1

n

2 (1 + an�1

n

2 ))

=
exp (an(� b

n

)) exp (� 1

n

2

P
an�1

k=1

k)

exp (� 1

n

2

P
an�1

k=1

k) exp (� 1

n

4

P
an�1

k=1

k2)

=
exp (�ab)

exp (� 1

n

4

P
an�1

k=1

k2)
 exp (�ab),

since the sum of the first an� 1 squares goes to O(n
3

6

), forcing the exponennt in the denom-
inator to 1 asymptotically.

Lower bound:

We bound the binomial quotient below by exp(�ab) by reversing the inequalities we use
in the numerator and denominator:

�
n

2�an

bn

�
�
n

2

bn

� =
(n2 � an)!(n2 � bn)!

(n2)!(n2 � an � bn)!
(23)

=
(n2 � bn)(n2 � bn � 1)(n2 � bn � 2) . . . (n2 � bn � (an � 1))

(n2)(n2 � 1)(n2 � 2) . . . (n2 � (an � 1))
(24)

=
(1 � b

n

)(1 � b

n

� 1

n

2 )(1 � b

n

� 2

n

2 ) . . . (1 � b

n

� (an�1)

n

2 )

(1 � 1

n

2 )(1 � 2

n

2 ) . . . (1 � (an�1)

n

2 )
. (25)
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Reversing the inequalities we use we get the above bounded below by

�
exp (�ab) exp (�ab/n) exp (� 2b

n

3

P
an�1

k=1

k) exp (� 1

n

2

P
an�1

k=1

k) exp (� 1

n

4

P
an�1

k=1

k2)

exp (� 1

n

2

P
an�1

k=1

k)
(26)

= exp (�ab) exp (�ab

n
) exp (�2b

n3

an�1X

k=1

k) exp (� 1

n4

an�1X

k=1

k2) (27)

= exp (�ab) exp (�ab

n
) exp (�b(an)(an � 1)

n3

) exp (�(an)(an � 1)(2an � 1)

n4

) (28)

� exp (�ab), (29)

for all n, since each of the smaller order terms are smaller than 1. Hence, the binomial
coe�cient quotient goes to exp (�ab) as n ! 1.
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