
Oberlin Oberlin

Digital Commons at Oberlin Digital Commons at Oberlin

Honors Papers Student Work

2018

A Computational Introduction to Elliptic and Hyperelliptic Curve A Computational Introduction to Elliptic and Hyperelliptic Curve

Cryptography Cryptography

Nicholas Wilcox
Oberlin College

Follow this and additional works at: https://digitalcommons.oberlin.edu/honors

 Part of the Mathematics Commons

Repository Citation Repository Citation
Wilcox, Nicholas, "A Computational Introduction to Elliptic and Hyperelliptic Curve Cryptography" (2018).
Honors Papers. 176.
https://digitalcommons.oberlin.edu/honors/176

This Thesis - Open Access is brought to you for free and open access by the Student Work at Digital Commons at
Oberlin. It has been accepted for inclusion in Honors Papers by an authorized administrator of Digital Commons at
Oberlin. For more information, please contact megan.mitchell@oberlin.edu.

https://digitalcommons.oberlin.edu/
https://digitalcommons.oberlin.edu/honors
https://digitalcommons.oberlin.edu/students
https://digitalcommons.oberlin.edu/honors?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.oberlin.edu/honors/176?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:megan.mitchell@oberlin.edu

A Computational Introduction to Elliptic

and Hyperelliptic Curve Cryptography

Nicholas Wilcox

March 2018

Abstract

At its core, cryptography relies on problems that are simple to construct but difficult to solve unless
certain information (the “key”) is known. Many of these problems come from number theory and group
theory. One method of obtaining groups from which to build cryptosystems is to define algebraic curves
over finite fields and then derive a group structure from the set of points on those curves. This thesis
serves as an exposition of Elliptic Curve Cryptography (ECC), preceded by a discussion of some basic
cryptographic concepts and followed by a glance into one generalization of ECC: cryptosystems based
on hyperelliptic curves. Our primary source for this material is [10].

Contents

1 Cryptography 2
1.1 The Discrete Logarithm Problem . 2

1.1.1 Index Calculus . 2
1.1.2 Baby Step–Giant Step . 3

1.2 Cryptosystems based on the DLP . 4

2 Elliptic Curves 6
2.0.1 Some Preliminary Algebraic Geometry . 6

2.1 The Group Law . 7
2.2 Formula for the Group Law . 9
2.3 Structure and Size of E(Fq) . 10

3 Elliptic Curves and Cryptography 12
3.1 Koblitz Encodings . 12
3.2 Example: Three-pass Protocol with Elliptic Curves . 13

4 Hyperelliptic Curves 14
4.1 Divisors . 14

4.1.1 Divisors of Rational Functions . 15
4.2 Jacobians of Hyperelliptic Curves . 16
4.3 Cantor’s Algorithm . 17

5 Hyperelliptic Curve Cryptography 18
5.1 The Frobenius Map and Finite Subgroups of Jacobians . 18
5.2 Concluding Remarks: Complexity, Discrete Logarithms, and Encodings 19

A Baby Step–Giant Step, and the order of P ∈ E(Fq) 21

1

1 Cryptography

The basic model of cryptography is as follows: Adrian wishes to send a message M , the plaintext, to
Beth. To do this, Adrian encrypts M with an encryption function E, obtaining C = E(M). We call C
the ciphertext. After Beth gets the ciphertext, she decrypts it with the decryption function D. For our
purposes, we can characterize E and D as bijections defined on some message space, where D is the inverse
of E, so that D(E(M)) = M for all messages M . The security of the encryption relies on secret information
k, the key(s), that determines the encryption and decryption functions. So, if some eavesdropper were to
obtain C, they could not feasibly recover M because it is hard to determine D without first determining k.

For instance, suppose we have an abelian, multiplicative group G, and our message is some element
M ∈ G. Pick an element k ∈ G, and let E be defined by E(x) = kx. Then C = kM , and the decryption
function D is given by D(x) = k−1x. The problem for the eavesdropper is to determine k while only knowing
kM and the structure of G.

1.1 The Discrete Logarithm Problem

Let G = 〈g〉 be a finite, cyclic group. For all h ∈ G, we know that there exists a solution k to the equation
gk = h. The discrete logarithm problem (DLP) is to solve for k, given g and h. 1

I Remark If n is the order of g, then gn+k = gngk = gk = h, so n + k is a solution as well. We can
characterize all of the solutions k to the equation gk = h as being congruent to the unique solution modulo n.
We write k = L(h) to express that all solutions are congruent to k (mod n). In general, equations involving
the discrete log L represent congruence relations modulo n. The group G and the base of the logarithm, g,
are understood to be an arbitrary cyclic group and generator, or are made explicit in context.

As the name and definition suggest, the discrete logarithm L is analogous to the usual logarithm defined
on the positive real numbers. Indeed, many of the same algebraic identities hold:

• gL(h) = h,

• for all h1, h2 ∈ G, L(h1h2) = L(h1) + L(h2), and

• for all m ∈ Z and h ∈ G, L(hm) = mL(h).

Example 1.1 Modular arithmetic provides a good introductory example to the DLP. Consider the multi-
plicative group F×p of nonzero integers modulo p, where p is prime. The group F×p is cyclic with order p− 1.

Therefore, if a is a generator for the group, then ak ≡ b (mod p) has a solution for all b ∈ F×p , and this
solution is unique modulo p− 1.

Let p = 7, then 3 is a generator for F×7 . The powers of 3 modulo 7 are

3→ 2→ 6→ 4→ 5→ 1,

so L(2) = 2, L(6) = 3, and so on. �

1.1.1 Index Calculus

The previous example illustrates a brute force method for obtaining a solution to the DLP in F×p . This is
infeasible when p is very large. A quicker method, known as index calculus, is based on the idea that if
am = b, then the discrete log of a can be used to solve the discrete log of b, because L(b) = L(am) = mL(a).
If we can compute the discrete logs of various primes, then those values can be used to compute the discrete
log of numbers that factor into those primes.

Example 1.2 Let G = F503, and note that 5 is a generator for F×503, so 5 will be the base of our discrete
logarithm L. Also, let B be a set containing the first few primes, say B = {2, 3, 5, 7, 11}. We call B the
factor base, and our first objective is to compute L(p) for each p ∈ B. We start by computing powers

1We can consider the DLP for an arbitrary finite group G if one allows for the possibility that there is no solution. That is,
once g and h are selected, a solution k exists if and only if h ∈ 〈g〉.

2

of 5 in G and noting those whose representatives (or whose additive inverses) factor in B. After several
computations, we obtain the following congruence relations:

51 ≡ 5 (mod 503)

56 ≡ 25 (mod 503)

537 ≡ −2 · 7 (mod 503)

543 ≡ 5 · 11 (mod 503)

558 ≡ 22 · 3 (mod 503)

The first relation seems trivial and redundant; however, it is not necessary that the generator–base should
be congruent to one of the primes in our factor base, so we would still need to compute the discrete log
of 5 regardless. By taking the discrete logarithm of these relations, we obtain the following (note that the
implied modulus is 502):

1 = L(5)

6 = 5L(2)

37 = L(−1) + L(2) + L(7)

43 = L(5) + L(11)

58 = 2L(2) + L(3)

We can begin computing the discrete logs of the other primes. The fourth equation can be straightforwardly
solved as L(11) = 42. Because 5 is unit modulo 502, we can solve the second equation L(2) = 6 · 5−1 = 202.
This value can be substituted into the last equation, so L(3) = 58− 2 · 202 ≡ 156. Finally, to compute L(7)
using the third equation, we need to know L(−1). Since 5 is a generator for F503, it cannot be a quadratic
residue. Therefore, by Euler’s Criterion, 5(503−1)/2 = 5251 = −1, so L(−1) = 251, and we can solve for
L(7) = 86.

Now, suppose that we want to compute L(255). We can use a similar approach as we did for the
primes in our factor base. We will compute 5m · 255 in F×503 for m = 0, 1, . . ., and so on, until like before,
we find a value that factors in B. Observe that 56 · 255 ≡ 24 · 7. Taking the discrete logarithm obtains
6 + L(255) = 4L(2) + L(7), and since we know L(2) and L(7), we can compute L(255) = 386. �

Index calculus is particular to discrete logarithms in multiplicative groups of finite fields. For arbitrary
groups, including those we will encounter in elliptic curve cryptography, there is not a notion of prime
factorization that we can exploit.

1.1.2 Baby Step–Giant Step

A more generally applicable method to solve the DLP is known as the “Baby Step–Giant Step” algorithm
and is due to Daniel Shanks [7]. Let G = 〈g〉 be a cyclic group of order N , and suppose we want to find
a solution k to the equation gk = h. Instead of computing all N powers of g (which is the brute force
approach), we compute two smaller sets of elements. One set is simply {gi : i = 0, 1, . . . ,m − 1} for some
integer m ≥

√
N . The other set, the “giant step”, is {hg−jm : j = 0, 1, . . . ,m − 1}. The reason we negate

the power of g and compose it with h is that we expect there to be a match between the two sets. Once we
have some i and j such that gi = hg−jm, we have a solution for the DLP, because gi+jm = h.

I Remark Our choice of m is what ensures a match between the two sets. We know that some solution
k exists such that 0 ≤ k < N ≤ m2. The correct values for i and j are the remainder and quotient of k
divided by m.

The Baby Step–Giant Step algorithm takes up O(
√
N) space as it runs, since we need to hold the

baby step’s elements in memory as we check for matches during the giant step part of the algorithm. The
implementation of the baby step’s storage affects the time complexity of checking for a match. Suppose that
we stored those points in an ordinary array. Then, for each of the

√
N giant step elements, we would need to

check for a match against each of the
√
N elements in the array. Using this method, the algorithm’s running

time would be O(N).

3

Alternatively, we can use a hash table to store the elements from the baby step. A hash table is a set
of key-value pairs, such that the keys are processed using a hashing function h that determines where
they and their associated values are stored internally. When implemented properly, hash tables allow for
a constant lookup time on average, since hashing the keys significantly narrows down the search. Hash
tables generalize arrays in the sense that for an array, a value’s key is its index in the array. We provide a
small example to illustrate how a basic hash table can be implemented. A more rigorous and sophisticated
treatment of the subject is given in [2, Chapter 11].

Suppose that we want to store pairs of integers and strings, such as (5, “dog”) and (1008, “cat”), where
the integers are the keys and the strings are their associated values. Even though the number of possible
keys is very large, we don’t expect every integer to be used as a key, so we use a hashing function h to map
the universe of keys (here it is Z) to a smaller, finite set of hash values. When the keys are integers, a
natural choice for h is to compute the remainder of a key k when divided by some previously selected prime
p.

Since the set of keys is strictly larger than the set of hash values, there will exist two keys k1 and k2 such
that h(k1) = h(k2). This is called a collision, and one method to deal with collisions is known as chaining.
Essentially, every hash value hi has its own list (or chain) of key-value pairs, such that all pairs (k, v) where
h(k) = hi are stored in hi’s list. Here is a depiction of what our hash table might look like after several
items are added, supposing that p = 11:

0 1 2 3 4 5 6 7 8 9 10
(132, “asp”) (45, “fish”) (5, “dog”) (1008, “cat”) (75, “bear”)
(99, “bird”) (126, “bee”)

(27, “pony”)

If we wish to lookup the value associated with the key 27, then we could compute h(27) = 5, and then
iterate through 5’s chain until we find the item whose key is 27 and return its value, “pony”. Alternatively,
if we want to lookup the value for 36, we would inspect the chain with hash value h(36) = 3, observe that
the chain is empty, and return some value indicating that 36 has no associated value in the hash table. No
matter how many items we added to the other chains, these operations would take the same amount of time.
When chaining is utilized, it is common for hash tables to adjust the hash function and reconstruct the table
whenever the ratio of stored values to the number of chains, called the loadfactor, becomes too large. In
our scenario, we might choose a new prime p′ > 2p, so that the loadfactor is cut in half.

For the Baby Step–Giant Step algorithm, we use the group elements gi as the keys, and the integers i
as their respective values. Because checking a giant step element for a match can be done in constant time
on average when using a hash table, this implementation of the Baby Step–Giant Step algorithm runs in
O(
√
N) time.

1.2 Cryptosystems based on the DLP

As previously stated, the primary task of cryptography is to enable Adrian to send Beth a message without
letting any eavesdroppers, whom we collectively personify as “Eve”, read it. There are two major classes of
cryptography. If both the encryption and decryption functions are derived from the same key k, then we say
that a symmetric cryptosystem is being used. A fundamental dilemma for symmetric cryptosystems is
how to distribute the key to trusted parties like Adrian and Beth, while preventing Eve from obtaining it as
well.

Otherwise, if Adrian and Beth need not have previously established a shared secret key, then we say
they are using an asymmetric cryptosystem. Asymmetric cryptosystems are also called public key
cryptosystems because a popular technique in asymmetric cryptography is to let both Adrian and Beth
generate their own pair of public and private keys. In this case, a message encrypted by one’s public key can
only be decrypted using their private key, and vice versa. To send a message to Beth, Adrian uses Beth’s
public key to encrypt it, and since Beth is the only person with her private key, only she can decrypt and
read the message.

While public key cryptosystems dodge the issue of key distribution, their encryption algorithms are
typically slower than those that use symmetric keys. A common practice is to use asymmetric cryptography to
generate a shared secret key for a symmetric cryptosystem that will be used for the bulk of the communication

4

Given : A group G with order N .
Input : g, h ∈ G, where g is a generator for G.
Output: An integer k such that gk = h.

let m = d
√
Ne, temp = e // where e is the identity element of G

let L be a hash table
for i = 0, 1, . . . ,m− 1 do // baby step

L[temp] = i
temp→ g · temp // "·" is the group operation

end

let inc = g−m

temp→ h // temp is the current hg−jm

for j = 0, 1, . . . ,m− 1 do // giant step

if L[temp] exists then // match found

let i = L[temp]
return k = i+ jm

temp→ temp · inc.
end

// If the program never halts in the for loop, then no solution k exists.

Algorithm 1: Baby Step–Giant Step algorithm for the Discrete Logarithm Problem.

between Adrian and Beth. One such method is called Diffie–Hellman key exchange, which we will now
describe.

In Diffie–Hellman key exchange, Adrian and Beth publicly agree on a group G and an element g ∈ G.
Therefore, Eve also knows G and g. Adrian and Beth each choose their own secret integers a and b. Adrian
computes ga and sends it to Beth, while Beth computes gb and sends it to Adrian. Finally, they each
compute (ga)b = (gb)a = gab, from which a shared secret key can be derived.

Eve, on the other hand, does not know gab. She only knows g, ga, and gb. If she could solve the discrete
logarithm problem in G, then Eve could deduce the values of a and b, and thus compute the key that Adrian
and Beth use. So, we say that Diffie–Hellman key exchange effectively relies on the difficulty of the DLP.

Another asymmetric technique is the Three-pass protocol, which assumes that the encryption and decryp-
tion functions are commutative with respect to composition. This is because Adrian and Beth take turns
encrypting and decrypting data between each of the three passes.

For instance, let G be a publicly agreed upon group with order N , and let M ∈ G be the message Adrian
wants to send to Beth. Adrian selects a secret integer mA that is relatively prime to N . After he sends
M1 = MmA to Beth, she picks her own secret integer mB , which is also relatively prime to N . She then
computes M2 = MmB

1 and sends it to Adrian.2

Before the third and final pass, Adrian computes the multiplicative inverse of mA modulo N and then

sends M3 = M
m−1

A
2 to Beth. Beth computes the inverse of her own mB and finally computes M

m−1
B

3 , which
is the original message M . This is because the final value is

M
m−1

B
3 = MmAm

−1
A mBm

−1
B ,

and because both mAm
−1
A and mBm

−1
B are each congruent to 1 modulo N , the value Beth ultimately obtains

is MdN+1 = M by Lagrange’s theorem.
This implementation of the Three-pass protocol also relies on the difficulty of the DLP for security. Eve

knows M1, M2, and M3, which are MmA , MmAmB , and MmB , respectively. If she could solve the DLP,

2Adrian and Beth must also make sure not to select integers mA and mB that are multiplicative inverses of each other
modulo N . Otherwise, M2 = M will be broadcast to Eve.

5

then Eve could determine mA and mB , and then compute either of their multiplicative inverses modulo N
in order to compute M .

2 Elliptic Curves

Now that we know how to do cryptography with groups, we move on to study elliptic curves as a means
of obtaining those groups.

Given a field F , with algebraic closure F , and two constants a, b ∈ F , we may define an elliptic curve

E as the set of points (x, y) ∈ F 2
such that y2 = x3 + ax + b. Equations of the form y2 = x3 + Ax + B

are called Weierstrass equations. Observe that since y only appears with even degree in the equation,
(x, y) ∈ E if and only if (x,−y) ∈ E as well.

If we have constants a1, . . . , a6 ∈ F , then we can consider the set of points that satisfy the generalized
Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

When the characteristic of F is neither 2 nor 3, we can make various substitutions and obtain a regular
Weierstrass equation y20 = x30 + a′x0 + b′. We will only consider this case. Furthermore, for the sake of
simplicity, we assume that the polynomial in x on the right hand side of Weierstrass equation has distinct
roots so that the curve is non-singular.

I Remark The study of elliptic curves relies on considering points whose coordinates lie in an algebraically
closed field, hence the definition given above. However, the cryptographic application of elliptic curves comes
from restricting the set of points on a curve to those whose coordinates lie in a finite field. In general, if
E : y2 = x3 +ax+ b is an elliptic curve and K is a field that contains a and b, then we say that E is defined
over K, and we let E(K) denote the set of points on E whose coordinates are in K.

a = −1 a = 0 a = 1

b = 1

b = 0

b = −1

Figure 2.1: A series of elliptic curves E(R) : y2 = x3 + ax + b, where a and b vary over {−1, 0, 1}. Note
that the curve in the center, given by y2 = x3, is singular and so is not truly an elliptic curve under our
definition.

2.0.1 Some Preliminary Algebraic Geometry

One may work with elliptic curves whose points are in the Cartesian product of a field with itself, such as
R2, provided that some mathematics is swept under the rug through formal symbolism. However, a proper

6

understanding of elliptic curves requires us to consider points in the projective plane.

For a given field F , let (x, y, z) be a point in F 3 such that (x, y, z) 6= (0, 0, 0). Then we can define the
equivalence class [x : y : z] whose elements are the nonzero scalar multiples of (x, y, z). We define the
projective plane P2

F to be the set of these equivalence classes. Symbolically,

[x : y : z] = {(λx, λy, λz) : λ 6= 0}, and

P2
F = {[x : y : z] : (x, y, z) 6= (0, 0, 0)}.

If z 6= 0, then (x/z, y/z, 1) ∈ [x : y : z], and furthermore, [x : y : 1] ∈ P2
F for all x, y ∈ F . In other words,

the equivalences classes in P2
F whose members have nonzero z-components form a copy of F 2, what we call

the affine plane. Therefore,
P2
F = F 2 ∪ {[x : y : 0] : (x, y) 6= (0, 0)}.

This other set is similar to P2
F , except that the z-dimension has been omitted. As the nonzero equivalence

classes from F 3 form P2
F , the nonzero equivalence classes from two coordinates form P1

F . In general, we have
Pn
F = Fn∪Pn−1

F , where Pn−1
F is called the hyperplane at infinity. So, P2

F is composed of the affine plane
and a line at infinity, {[x : 1 : 0] : x ∈ F}. This line at infinity also has a point at infinity, [1 : 0 : 0].

If we have an algebraic curve defined over the affine plane, such as the solutions (x, y) to a Weierstrass
equation, we can extend this curve to the projective plane using a method called homogenization, which
can also be generalized to higher dimensions, but we limit our discussion to the plane. Homogenization
introduces the z-component by multiplying each term in the equation by a nonnegative power of z so that
every term has the same degree. The homogenized form of y2 = x3 + ax + b is y2z = x3 + axz2 + bz3.
Observe that if z = 1, then we are left with our original equation, so every point (x, y) that satisfied the
original equation also satisfies the homogenized one because we identify (x, y) with [x, y, 1].

Otherwise, if z = 0, then we obtain 0 = x3, so x = 0 as well. The set of solutions in F 3 is {(0, y, 0) : y ∈ F}.
In the projective plane, this reduces to a single point on the line at infinity, [0 : 1 : 0].

I Remark What we have shown is that when we move elliptic curves from the affine plane to the projective
plane, we add a single point to the curve, [0 : 1 : 0]. We denote this point with the ∞ symbol, and it will be
the identity element for the group structure we will define on the points on an elliptic curve. Furthermore,
since this is the only non-affine point, we do not need to adjust our notation. Every other point on an elliptic
curve can be represented by a point on the affine plane, i.e. by using two coordinates. From now on, it will
be assumed that if E is an elliptic curve defined over F , then the points on E lie in P2

F
, and the points on

E(F) lie in P2
F .

2.1 The Group Law

The group operation defined for elliptic curves is known as the Chord and Tangent Method, which we will
denote additively. Let E be an elliptic curve. For two points P,Q ∈ E, we compute P +Q by extending the
line through P and Q (the “chord”) to a third point of intersection, R, with the curve. We construct the
vertical line through R (the “tangent”, more or less) which also intersects E at R′, which is the reflection of
R about the x-axis. Then, P +Q = R′. This process is depicted in Figure 2.2.

I Remark That there will always be a third point of intersection R between E and the line through P
and Q is not obvious. Bézout’s Theorem tells us that a line and an elliptic curve, which is of degree 3,
can have at most three points of intersection. Furthermore, all three points of intersection occur when we
consider all points in P2

F
, and also count points of intersection according to their multiplicity.

If E is defined over a field F , then we can apply the Chord and Tangent Method to E(F) even if F is not
algebraically closed. Since we begin with two points P,Q ∈ E(F), the third point of intersection between
the line and E will also have coordinates in F , as the following example exhibits.

Example 2.1 The curve in Figure 2.2 is defined over Q and is given by the equation y2 = x3 − 5
2x + 4.

Observe that the points P = (0, 2) and Q = (−2, 1) are on the curve. To compute P + Q, we must first

7

Figure 2.2: Illustration of the group law for elliptic curves.

compute the equation for the line L through P and Q, which is y = x
2 + 2. Then, we substitute into the

Weierstrass equation: (x
2

+ 2
)2

= x3 − 5

2
x+ 4

x2

4
+ 2x+ 4 = x3 − 5

2
x+ 4

0 = x3 − x2

4
− 9

2
x

The roots to this polynomial are the x-coordinates of points that are in the intersection of L and E,
and we already know that the x-coordinates of P and Q are two of those roots. Recall that c is a root to a
polynomial p(x) if and only if (x− c) divides p(x). So, we may divide by x(x+ 2) = x2 + 2x to obtain

x3 + x2

4 −
9
2x

x2 + 2x
= x− 9

4
.

Because we divided a cubic polynomial by a quadratic polynomial, we obtained a linear term that identifies
a third root. Therefore, the x-coordinate of the third point of intersection is 9/4, and we may substitute into
L’s equation to solve for the y-coordinate, which is 25/8. Finally, we reflect about the x-axis, which negates
the y-coordinate, and obtain P +Q = (9/4,−25/8). �

I Remark For a point P on an elliptic curve, we take “the line through both P and P” to mean the line
tangent to E at P , so that the line intersects E at P with a multiplicity of 2. If E is given by the Weierstrass
equation y2 = x3 + ax+ b, then we may use implicit differentiation to obtain:

dy

dx
=

3x2 + a

2y
.

Therefore, the line tangent to E at P = (x1, y1) is vertical if and only if y1 = 0. Otherwise, if m = dy
dx , then

the tangent line is given by y = m(x− x1) + y1.

Example 2.2 Consider the curve E(Q) : y2 = x3− 3x+ 3, and observe that P = (1, 1) ∈ E. Furthermore,
the line tangent to E at P is horizontal. The other point on E with a y-coordinate of 1 is (−2, 1). Therefore,
P + P = (−2,−1). �

8

I Remark When a line between two points, or the tangent line at a point, is vertical, the third point of
intersection is ∞. This is because the equation for a vertical line in the affine plane looks like x = c. This
becomes x = cz when homogenized. The solutions where z is nonzero correspond to the points on the line
in the affine plane. If z = 0, then x = 0 as well, and y is allowed to vary, whence ∞ = [0 : 1 : 0] is on any
vertical line as well as any elliptic curve. Conversely, the line between ∞ and an affine point P is simply the
vertical line through P .

Two more notes on ∞:

1. The reflection of ∞ about the x-axis is ∞, since [0 : 1 : 0] = [0 : −1 : 0].

2. The “line through ∞ and ∞” actually intersects an elliptic curve at ∞ with a multiplicity of 3. Recall
that when we homogenized the Weierstrass equation and substituted z = 0, we obtained x3 = 0, which
is where the third intersection at ∞ comes from.

In order for an elliptic curve E to satisfy the definition of a group, we must have an identity element, and
also inverse elements. We claim that ∞ is the identity element under the Chord and Tangent Method. We
have already shown that ∞ +∞ = ∞. If P = (x, y) is an affine point on E, then the line through P and
∞ is vertical. This implies that the third point of intersection between this line and E is (x,−y). Once we
reflect (x,−y) about the x-axis, we get (x, y) = P . Therefore, P +∞ = P for all P ∈ E.

Since ∞ is the identity, it is its own inverse. For an affine point P = (x, y), we claim that the inverse
of P , written −P , is (x,−y). Observe that the line through P and (x,−y) is vertical, so the third point
of intersection with E is ∞. As previously stated, reflecting ∞ obtains ∞, so the inverse of P = (x, y) is
−P = (x,−y).

Also, P and Q are symmetric in the definition of P +Q. That is, the “line through P and Q” is the same
as the “line through Q and P”. Therefore, the binary operation is commutative. We have defined P +Q for
all possible values for P and Q, so the operation is closed on an elliptic curve. Associativity can be shown,
but it is a complicated proof that is not illuminating to the study of elliptic curve cryptography, so we omit
it. A complete proof appears in [10, Section 2.4]. We can summarize everything that has been said in the
following:

Theorem 1 If E is an elliptic curve defined over a field F , then the Chord and Tangent Method defines a
binary operation on E(F) with respect to which E(F) is an abelian group.

I Remark There will be times when we wish to evaluate functions f(x, y) at points on an elliptic curve,
including ∞. When this happens, we use the convention that ∞ = (∞,∞), and evaluate the limit of f(x, y)
as x and y get arbitrarily large. For instance, if f(x, y) = x+2

y , then f(∞) = 1, since the limit of x+2
y , as x

and y tend to infinity, is 1.

2.2 Formula for the Group Law

Instead of actually performing polynomial division to add points, we can give a formula for the group law
using pure field arithmetic. Let P = (x1, y1) and Q = (x2, y2) be non-identity points on the elliptic curve
E : y2 = x3 + ax+ b. Suppose that P +Q 6=∞, so that the slope m of the line through P and Q is defined.

If P 6= Q, then m =
y2 − y1
x2 − x1

, and if P = Q, then m =
3x21 + a

2y1
. In either case, we have an linear equation

y = mx+ c, so we may substitute this equation for y into the equation for E and obtain:

x3 −m2x2 + (a− 2cm)x+ b− c2 = 0.

The three roots to this cubic polynomial are x1, x2, and some x3 ∈ F that is the x-coordinate of P +Q. In
other words, the polynomial is equal to

(x− x1)(x− x2)(x− x3) = x3 − (x1 + x2 + x3)x2 + other terms.

Therefore, m2 = x1 + x2 + x3, so we can solve for x3. Then, we can use the equation of the line to find its
third point of intersection with E, negate the value of the y-coordinate, and obtain P +Q.

9

Given : An elliptic curve E : y2 = x3 + ax+ b.
Input : P,Q ∈ E, where P = (x1, y1) and Q = (x2, y2).
Output: P +Q = (x3, y3)

if x1 6= x2 then // we can compute the slope m directly

m =
y2 − y1
x2 − x1

x3 = m2 − (x1 + x2)
y3 = m(x1 − x3)− y1
return (x3, y3)

else if x1 = x2 then
if y1 6= y2 then // the line through P and Q is vertical

return ∞
else if y1 = y2 then // P = Q

if y1 6= 0 then // we compute the line tangent at P

m =
3x21 + a

2y1
x3 = m2 − 2x1
y3 = m(x1 − x3)− y1
return (x3, y3)

else if y1 = 0 then // the line tangent to P is vertical
return ∞

Algorithm 2: An algorithm to compute the group law for elliptic curves.

It will be useful to compute the sum of a point added to itself multiple times. We can naively do this in
linear time, but the best method is called successive doubling, and returns nP in O(log(n)) time.3 For
instance, if we wanted to compute 16P , then we could begin by computing 2P = P +P , then 4P = 2P +2P ,
and so on. Each doubling is an addition of the previous result to itself. In general, we can expand n in
base-2, compute only the multiples 2kP , and sum them appropriately to obtain nP (See Algorithm 3).

2.3 Structure and Size of E(Fq)

If F is a finite field, so that F = Fq for some prime power q = pe, then there are only finitely many points
in F 2, hence E(F) is a finite abelian group. The structure theorem for finite abelian groups implies that
E(F) ∼= Zn1

×· · ·×Znk
where n1, . . . , nk are positive integers satisfying ni | ni+1. In fact, from [10, Theorem

4.1], we know that k ≤ 2. The following important theorem relates the order of E(Fq) to q.

Theorem 2 (Hasse) Let E be an elliptic curve defined over the finite field Fq. Then the order of E(Fq)
satisfies

|q + 1−#E(Fq)| ≤ 2
√
q.

We will detail an algorithm that exploits the bounds given by Hasse’s Theorem to compute #E(Fq).
Before that, we give two more results about #E(Fq), which are Theorems 4.12 and 4.14 in [10].

Theorem 3 Let #E(Fq) = q + 1− a. Write x2 − ax+ q = (x− α)(x− β). Then

#E(Fqn) = qn + 1− (αn + βn)

for all n ≥ 1.

3There might be additional complexity given by the size (in binary representation) of the coordinates for curves over fields
with characteristic 0, like Q. However, if a finite field Fq has been fixed, then the space required to represent the coordinates
has an upper bound, so it is of order O(1).

10

Given : An elliptic curve E.
Input : P ∈ E, n ∈ Z
Output: nP

if n < 0 then
Rerun algorithm with −n and −P

let a = n, B =∞, and C = P
while a 6= 0 do

if a is even then
a→ a/2
C → 2C

else if a is odd then
a→ a− 1
B → B + C

end
return B

Algorithm 3: O(log(n)) method to compute nP .

For all x ∈ Fq, where q is odd, we define a generalized Legendre symbol by

(
x

Fq

)
=

1 if t2 = x has a solution t ∈ F×q ,
−1 if t2 = x has no solution t ∈ Fq,
0 if x = 0.

Theorem 4 Let E(Fq) : y2 = x3 + ax+ b be an elliptic curve. Then

#E(Fq) = q + 1 +
∑
x∈Fq

(
x3 + ax+ b

Fq

)
.

Example 2.3 Suppose we want to compute the order of E(F125) : y2 = x3 + x + 1. We can do so by
considering E(F5) and applying Theorem 3. A straightforward computation using Theorem 4 shows that
#E(F5) = 9 = 5 + 1 + 3. By using the quadratic formula, we compute the roots of x2 + 3x + 5, which are
−3±

√
−11

2
. Then, the cubes of the roots are 9± 2

√
11, so the sum of their cubes is 18. Therefore, we may

compute
#E(F125) = 53 + 1− 18 = 108.

�

While Theorem 4 depicts an explicit algorithm for computing the order of an elliptic curve group, its time

complexity is O(αq), where α is the time complexity of computing
(
x
Fq

)
. Although we can amortize α be

squaring all the elements of Fq beforehand and holding a list of squares in memory, a better approach is to
reduce the problem of computing #E(Fq) to the problem of computing the order of a point on the curve.4

How does knowing the order of a point P , denoted |P |, help us compute N = #E(Fq)? Hasse’s Theorem
tells us that

(
√
q − 1)2 = q + 1− 2

√
q ≤ N ≤ q + 1 + 2

√
q = (

√
q + 1)2,

so we have an interval of length 4
√
q which we know contains N . By Lagrange’s Theorem, |P | divides N for

all P ∈ E. Suppose that we found a point P1 ∈ E such that |P1| > 4
√
q. We know that at least one multiple

4See Appendix A for an explanation of how the Baby Step–Giant Step algorithm can be modified to compute the order of
a point. For now, we will carry on the discussion of computing #E(Fq), assuming that we have a black box that computes the
order of a point.

11

of |P1|, namely N , is in our interval. Furthermore, because |P1| is larger than the length of the interval, N
is the only such multiple.

More generally, if P1, . . . , Pk ∈ E, then each |Pi| divides N , and so M = lcm(|P1|, . . . , |Pk|) divides N as
well. We can therefore find the value of N by adding random points to our list. Each time, we compute the
least common multiple of the orders of the points, call it M . Then, we see which multiples of M are in the
interval [(

√
q− 1)2, (

√
q+ 1)2]. If only one multiple of M is in the interval, then that value is N . Otherwise,

we continue adding points to our list.

Input : An elliptic curve E(Fq) : y2 = x3 + ax+ b.
Output: #E(Fq).
let M = 1 // lcm(1, n) = n for all n, so we initialize M as 1.

for x ∈ Fq do
if x3 + ax+ b is a square in Fq then

// P and −P have the same order, so either value for y works.

let y = ±
√
x3 + ax+ b

let m = |P |, where P = (x, y)
M → lcm(M,m)

// Now we see if M is large enough to determine #E(Fq). Observe that

a ≤ kM ≤ b if and only if a/M ≤ k ≤ b/M, so the number of multiples of M in

[a, b] is the same as the number of integers in [a/M, b/M]. Furthermore, there is

a unique solution k if and only if the ceiling of a/M and the floor of b/M are

both k.
let k1 = d(√q − 1)2/Me, k2 = b(√q + 1)2/Mc
if k1 = k2 then

return k1M

end

Algorithm 4: Using |P | for P ∈ E(Fq) to compute #E(Fq).

3 Elliptic Curves and Cryptography

This section serves as a synthesis of the previous two sections by giving a concrete example of implementing
and using a cryptosystem based on elliptic curves. First, we cover some encoding schemes proposed by Neal
Koblitz in [6] that allow us to encode plaintext messages as points on an elliptic curve. Then, we will show
how Adrian and Beth can use elliptic curves to perform the Three-pass protocol. Finally, we will compare
the time it takes to perform the protocol with the time it takes for Eve to decrypt the message using the
Baby Step–Giant Step algorithm. While the scale of the example is not akin to professional cryptographic
standards, it will nevertheless illustrate the security of elliptic curve cryptography.

3.1 Koblitz Encodings

Recall that our model of cryptography involves a message space, such as all binary strings of some fixed
length, and bijections on that message space that are inverses. Suppose that the cardinality of our message
space is M , so that the messages can be bijected on the integers {m ∈ Z : 0 ≤ m < M}. Then, we may
encode messages as points on an elliptic curve by encoding their associated integers. In [6], Koblitz offers
three encoding schemes, of which we describe the first two.

Encoding Scheme 1 Pick a prime p ≥ 5 and an even integer n = 2n′ such that M ≤ pn
′
. To encode a

message m onto E(Fpn), write m in base-p: m = m0 + m1p + · · · + mn′−1p
n′−1. Pick a basis b0, . . . , bn′−1

for the field extension Fpn′/Fp (considered as an Fp-vector space of dimension n′), and let

x = m0b0 +m1b1 + · · ·+mn′−1bn′−1.

12

Then, we can evaluate the righthand side of E’s Weierstrass equation at x, denoting the obtained value by
s. If s is a square in Fpn′ , then we may let y =

√
s. Otherwise, t2 − s is irreducible in Fpn′ [t], and we may

adjoin its roots to obtain a solution y in the quadratic extension Fp2n′ = Fpn . Either way, we obtain a point
P = (x, y) ∈ E(Fpn) to which we may encode m. To decode and obtain m from P , we determine the values
m0, . . . ,mn′−1 using x and the basis, after which m can be computed.

Encoding Scheme 2 A simpler encoding scheme is to associate a message m with a point P such that
the x-coordinate of P is m. However, such a point would only exist on a given curve E(F) : y2 = x3 +ax+ b
if m3 + am+ b is a square in the finite field F , which may not always be the case.

To remedy this, we give m multiple x-coordinates to try and find a point on the curve. We pick a prime
integer p > 100M , and let E be an elliptic curve defined over Fp. For each n ∈ {0, 1, . . . ,M − 1}, we
evaluate the righthand side of E’s Weierstrass equation at 100m, 100m+1, and so on, up to 100m+99. This
effectively obtains 100 random elements in Fp. Since half of the elements in F×p are squares, the probability
that we will not obtain a point to which m can be encoded is 2−100. Finally, we can decode a point P by
dividing its x-coordinate by 100 and taking the floor of that quotient.

I Remark Since we are relying on the DLP to provide security, we want the points that encode our
messages to have large order. So, if (100n+ i)3 + a(100n+ i) + b = 0, then we should skip onto 100n+ i+ 1
and not use P = (100n+ i, 0), which has order 2.

3.2 Example: Three-pass Protocol with Elliptic Curves

Suppose that Adrian wants to send a message to Beth. We assume that Adrian’s message is represented
in binary, and that we will use the second of the two aforementioned encoding schemes. Since the size of
Adrian’s message could be arbitrarily large, we pick a positive integer s and encrypt the message s bytes at
a time. Therefore, the size of our message space is 28s.

Say s = 1, and Adrian wants to use the Three-pass Protocol to send the single ASCII character “A”,
which is 0x41 in hexadecimal, or 65 in decimal, to Beth. They publicly agree on a prime integer p greater
than 100 · 28 = 25600 and an elliptic curve defined over Fp. Let p = 25601 and E(Fp) be given by the
equation y2 = x3 + x + 1. Using the Koblitz encoding scheme described earlier, Adrian obtains the point
P = (6500, 12257).

We can easily compute |P | = 8512. Adrian picks a random unit modulo |P |, say mA = 4401. Then, he
computes

M1 = mAP = (110, 8415),

and sends it to Beth. Because mA is relatively prime to |P |, Beth can compute |M1| = |P | and pick her own
random unit mB = 1331. The following points are computed and transmitted accordingly:

M2 = mBM1 = (20823, 20645)

M3 = m−1A M2 = (15429, 6895).

Finally, Beth computes M4 = m−1B M3 = P , and then decodes the original message A = 65 from P .

Below is a table showing the average time it takes to complete the computations involved in this process
as the block size s increases. To illustrate the security of protocol, we also list the average time it takes for
Eve to decrypt the message using the Baby Step–Giant Step algorithm to solve discrete logarithms. The
time it takes to transmit M1, M2, and M3, as well as the time needed to confirm that mA and mB are not
inverses, is not accounted for. I wrote my own code for elliptic curves and their algorithms using SageMath
[8], and ran it on a virtual machine with about 13 gigabytes of RAM and 8 Intel i7 processors. The values
shown are averages obtained by Python’s timeit module, which times a script by returning the best result
from 5 tests, where each test consists of looping the script 10 times and returning the average time per loop.

The script takes in the block size s as input and does the following:

1. Find the smallest prime p larger than 100 · 28s.

13

2. Initialize an integer m whose value is the ASCII encoding of the string consisting of s A’s (i.e. if s = 3,
then m = 0x414141).

3. Encode m as a point on the elliptic curve E(Fp) : y2 = x3 + x+ 1.

4. Perform the Three-pass protocol, which includes computing #E(Fp).

Only the last two steps are timed.

Block Size s Average Protocol Time Average Baby Step–Giant Step Time
1 2.23 ms 2.51 ms
2 4.26 ms 20.7 ms
3 8.05 ms 271 ms
4 18.5 ms 9.23 s
5 69.2 ms > 20 min
6 370 ms > 20 min
7 1.85 s > 20 min
8 5.41 s > 20 min

Figure 3.1: Average computation times to perform/crack the Three-pass Protocol. When s = 5, so that
p > 100 ·240, the Baby Step–Giant Step algorithm exhausted the memory on my machine, which then halted
the program after running for about half an hour.

4 Hyperelliptic Curves

Let g be a positive integer, let F be a field, and let f, h be polynomials in F [x] such that f is monic of
degree 2g + 1 and deg(h) ≤ g. Then, the hyperelliptic curve C is the set of points in P2

F
that satisfy the

homogenized form of
y2 + h(x)y = f(x),

provided that the curve is nonsingular. We call g the genus of C, and say that C is defined over F . When F
is not of characteristic 2, then we can do as we did for generalized Weierstrass equations and define the same
curve C with an equation y2 = f(x), where f is a monic polynomial in F [x] with degree 2g+1. We will only
consider this case, and note that the non-singularity condition (for affine points) means that f is separable.
Furthermore, P = (x, y) ∈ C if and only if Q = (x,−y) ∈ C. For ordinary elliptic curves, Q = −P . For
hyperelliptic curves, we define an involution ω : C → C by ω(P) = Q.

I Remark As with elliptic curves (which are hyperelliptic curves of genus g = 1), the only non affine
point on C is ∞ = [0 : 1 : 0]. However, when g > 1, ∞ is a singular point. We can treat C as a nonsingular
curve by transforming it in such a way that the affine points remain fixed, and C obtains a new unique point
on the hyperplane, which we denote using ∞.

The prefix “hyper-” in “hyperelliptic curve” refers to the fact that the polynomial defining the curve
may be of higher degree than 3, which is the degree of the Weierstrass equations for elliptic curves. As a
consequence of this, we cannot use the Chord and Tangent method to derive a group structure. If we take
two points on a quintic curve and extend the line between them, it is not guaranteed that there will be a
unique third point of intersection between the line and the curve.

Rather than form a group from the points on a hyperelliptic curve, we will begin with a large group
based on formal sums of those points, and then take a quotient of that group to obtain something much
more practical. We briefly discuss the theory of those formal sums for general nonsingular algebraic curves.

4.1 Divisors

Let C be a nonsingular algebraic curve defined over a field F . As with elliptic curves, we take this to
mean that C is the set of points in P2

F
that satisfy a polynomial equation in F [x, y] such that the partial

14

derivatives of x and y never simultaneously vanish. For each point P ∈ C, we define a symbol [P]. A divisor
D on C is a finite linear combination of these symbols that have integer coefficients:

D =
∑
i

ni[Pi], ni ∈ Z.

The set of divisors on C, denoted Div(C), form an abelian group where addition of divisors is defined by
adding the coefficients of corresponding symbols, and the identity is the empty sum. Define the degree of
a divisor to be the sum of its coefficients. The set of degree 0 divisors, Div0(C), is a subgroup of Div(C).

I Remark When C is a hyperelliptic curve, P ∈ C implies ω(P) ∈ C, so [ω(P)] ∈ Div(C). We can extend
ω to Div(C) by defining ω (

∑
i[Pi]) =

∑
i[ω(Pi)].

4.1.1 Divisors of Rational Functions

Let C be a nonsingular algebraic curve defined over F , and let f be a rational function on C. That is,

f =
p(x, y)

q(x, y)
, where p and q are polynomials in F [x, y]. Let P = (x, y) be an affine point on C. We say that

f has a zero at P if f(x, y) = 0. If f(x, y) =∞, then we say that f has a pole at P . In other words, f has
a zero at P when P is a root of p, and it has a pole at P when P is a root of q.

For every point P ∈ C, there exists a rational function uP such that uP (P) = 0 and every rational
function f ∈ F (x, y) can be written as

f = urP g, with r ∈ Z and g(P) 6= 0,∞.

We call uP a uniformizer at P , and we define r to be the order of f at P , written ordP (f). Essentially,
uniformizers allow us to count the multiplicity of zeros and poles.

The following theorem (Proposition 11.1 in [10]) combines the previous discussions on divisors and rational
functions.

Theorem 5 Let f be a nonzero rational function on a nonsingular algebraic curve C.

(a) f has only finitely many zero and poles,

(b) f has the same number of zeros and poles (counted with order), and

(c) if f has no zeros or poles, then f is a constant function.

In light of this theorem we may define, for every rational function f on C, a divisor

div(f) =
∑
P∈C

ordP (f)[P] ∈ Div0(C).

Part (a) of Theorem 5 makes div(f) well defined, since it implies that the sum is finite, and part (b) implies
that deg(div(f)) = 0. If D is a divisor on C and D = div(f) for some rational function f then we say that
D is a principal divisor.

Let P be any point on C, and let uP be a uniformizer for P . For any two rational functions f, g on C,
we have that

f = ur1P h1 and g = ur2P h2,

where h1(P), h2(P) 6= 0,∞. This implies that fg = ur1+r2P h1h2, and that h1(P)h2(P) 6= 0,∞. Therefore,

ordP (fg) = ordP (f) + ordP (g),

and so if D1 = div(f) and D2 = div(g), then D1 +D2 = div(fg). Consequently, the set of principal divisors
on C, which we denote by Div∗(C), is a normal subgroup of Div0(C).

15

The quotient group Div0(C)/Div∗(C) is called the Jacobian variety of C and denoted by J . It is the
group we will eventually discuss using for cryptographic purposes. However, to see why the Jacobian is a
natural generalization of the elliptic curve group derived from the Chord and Tangent method, it is worth
showing that the Jacobian of an elliptic curve is isomorphic to its Chord and Tangent group.

Let E be an elliptic curve. We define the sum of a divisor on E as

sum

(∑
i

ni[Pi]

)
=
∑
i

niPi.

In other words, the sum of a divisor is simply its evaluation as per the usual group operation for elliptic
curves. Observe that the sum function defines a homomorphism between Div(E) and E. Furthermore, for
any P ∈ E, we may define the divisor D = [P] − [∞]. Since D ∈ Div0(E) and sum(D) = P , we conclude
that sum |Div0(E) is a surjective homomorphism onto E. It is true that sum(D) = ∞ if and only if D is a

principal divisor ([10, Theorem 11.2]), and therefore Div∗(E) is the kernel of sum : Div0(E)→ E. So by the
First Isomorphism Theorem for groups, E is isomorphic Div0(E)/Div∗(E), its own Jacobian.

4.2 Jacobians of Hyperelliptic Curves

In order to grasp the structure of a curve’s Jacobian J , we will show how J ’s elements, which are cosets
of Div∗(C), can be more practically represented. We begin by characterizing the divisors of polynomials. A
polynomial U(x) ∈ F [x] can be split into its linear factors

∏
i(x − ai)ci . Therefore, div(U) =

∑
ci div(x −

ai). On the hyperelliptic curve C : y2 = f(x), there are two points on C where x − ai evaluates to
0: P = (ai,

√
f(ai)) and ω(P). If f(ai) = 0, then P = ω(P), and the line x − ai is tangent to C at

P , so that ordP (x − ai) = 2. Regardless, there are two poles that must be accounted for, and since a
polynomial can not have a pole at an affine point, it must be that x − ai has a double pole at ∞. So,
div(x − ai) = [P] + [ω(P)] − 2[∞]. We have proven the first part of the following theorem, and a proof for
the second half can be found in [10, Proposition 13.2].

Theorem 6

(a) Let U(x) =
∏
i(x− ai)ci . Then

div(U) =
∑
i

ci ([Pi] + [ω(Pi)]− 2[∞]) ,

where Pi = (ai,
√
f(ai).

(b) Let V (x) be a polynomial and write f(x)− V (x)2 =
∏
i(x− ai)di . Then

div(y − V) =
∑
i

di ([(ai, bi)]− [∞]) ,

where bi = V (ai), and bi = 0 implies that di = 1.

Next, we say that D ∈ Div0(C) is semi-reduced if D is of the form
∑
i ci ([Pi]− [∞]), where Pi = (ai, bi),

and:

1. ci ≥ 0 for all i,

2. if bi = 0, then ci = 0 or 1, and

3. if bi 6= 0, then (ai,−bi) = ω(Pi) does not occur in D.

Intuitively, a semi-reduced divisor is like taking the divisor of a polynomial and removing either [Pi]− [∞]
or [ω(Pi)]− [∞] for each of the polynomial’s roots ai. If

∑
i ci ≤ g, then we say that D is reduced. For all

D1 =
∑
i ci ([Pi]− [∞]) and D2 =

∑
i di ([Pi]− [∞]), the greatest common divisor of D1 and D2 is

gcd(D1, D2) =
∑
i

min{ci, di} ([Pi]− [∞]) .

16

Corollary For all polynomials U(x) and V (x), div(y − V) and gcd(div(U),div(y − V)) are semi-reduced.

Let D = gcd(div(U),div(y − V)). To suppose that the coefficient of each ([P] − [∞]) term in D is the
same as the multiplicity ci of the corresponding root of U is equivalent to supposing that ci ≤ di for all i.
Therefore:

Theorem 7 (Proposition 13.4 in [10]) Let D =
∑
i ci ([Pi]− [∞]) be semi-reduced divisor, where Pi =

(ai, bi). Let U(x) =
∏
i(x− ai)ci , and let V (x) be a polynomial such that V (ai) = bi. Then

D = gcd (div(U),div(y − V)) ⇐⇒ U | f − V 2.

This theorem establishes a relation between certain pairs of polynomials (U, V) and semi-reduced divisors,
where (U, V) ∼ gcd(div(U),div(y − V)). Let D =

∑
i ci([Pi] − [∞]) be a semi-reduce divisor. If we require

that U be monic such that deg(U) =
∑
i ci, and also that deg(V) < deg(U), then there exists a unique pair

(U, V) such that U | f − V 2, or equivalently, D = gcd(div(U),div(y − V)) ([10, Theorem 13.5]).
If we restrict to pairs of polynomials (U, V) where deg(U) ≤ g, then we obtain a one-to-one correspondence

with reduced divisors. [10, Theorem 13.6] states that for each D ∈ Div0(C), there is a unique reduced divisor
D′ such that D −D′ ∈ Div∗(C), so therefore each congruence class in C’s Jacobian J has a unique reduced
divisor, and we have a one-to-one correspondence between pairs of polynomials (satisfying all the properties
mentioned) and the elements of J = Div0(C)/Div∗(C). We call (U, V) the Mumford representation of
its associated congruence class of divisors. Note that we will sometimes abuse notation and use (U, V) to
refer to D = gcd(div(U),div(y − V)), even when D is only semi-reduced.

4.3 Cantor’s Algorithm

The following algorithm, published by David Cantor [1], computes the group operation of a Jacobian J
using the Mumford representation. We do not supply a proof, but do provide an intuition for how the
algorithm works.

Suppose we have the Mumford pairs (U1, V1) and (U2, V2), which correspond to congruence classes of
divisors in Div0(C) that respectively contain reduced divisors D1, D2, where Di = gcd(div(Ui),div(y− Vi)).
Clearly, the sum in J of these divisor classes is the class that contains D1 +D2, so the first phase of Cantor’s
Algorithm is to combine the polynomials Ui and Vi in such a way that obtains a new pair (U ′, V ′) that is
the Mumford representation of a semi-reduced divisor that lies in the same congruence class as D1 +D2. In
more detail, we inductively apply the Euclidean Algorithm to find the the greatest common divisor d of U1,
U2, and V1 + V2, and find polynomials h1, h2, and h3 such that

d = h1U1 + h2U2 + h3(V1 + V2).

Then, we let

U ′ =
U1U2

d2
,

V0 =
h1U1V2 + h2U2V1 + h3(V1V2 + f)

d
, and

V ′ ≡ V0 (mod U ′) where deg(V ′) < deg(U ′).

It can be shown that (U ′, V ′) corresponds to a semi-reduced divisor that is in the same congruence class as
D1 +D2.

The second and final phase of the algorithm is a reduction procedure that modifies U ′ and V ′ until
(U ′, V ′) corresponds to the reduced divisor that is congruent to D1 +D2. Recall that deg(V ′) < deg(U ′) and

U ′ | f −V ′2. So, if deg(U ′) > g = deg(f), then deg
(
f−V ′2
U ′

)
< deg(U ′), so we reassign U ′ to be this quotient

and compute a new value for V ′ where deg(V ′) < deg(U ′) and (U ′, V ′) corresponds to a semi-reduced divisor
that is congruent to the divisor corresponding to the pair of original values for U ′ and V ′. This process is
applied recursively until deg(U ′) ≤ g.

17

I Remark In Cantor’s Algorithm and later on in this text, we will reduce a polynomials modulo another
polynomial. Given a field F two polynomials U(x), V (x) ∈ F [x], we define V % U to be the unique polynomial
V ′(x) such that V ≡ V ′ (mod U) and deg(V ′) < deg(U).

Given : A hyperelliptic curve C : y2 = f(x) of genus g with Jacobian J .
Input : Mumford representations (U1, V1), (U2, V2) of two divisor classes of J .
Output: The Mumford representation (U ′, V ′) of the sum of those divisor classes.

let d0, a1, b1 = xgcd(U1, U2)
let d, a2, b2 = xgcd(d0, V1 + V2)
let h1 = a1a2, h2 = a2b1, and h3 = b2

let V0 =
h1U1V2 + h2U2V1 + h3(V1V2 + f)

d

let U ′ =
U1U2

d2
and V ′ = V0 % U ′

Scale U ′ so that it is monic

while deg(U ′) > g do // Reduction procedure

U ′ → f − V ′2

U ′
V ′ → −V ′ % U ′

Scale U ′ so that it is monic

end
return (U ′, V ′)

Algorithm 5: Cantor’s Algorithm. The function xgcd(f, g) refers to the Extended Euclidean Algo-
rithm, which returns a triple (d, a, b) where d = gcd(f, g) and d = af + bg.

5 Hyperelliptic Curve Cryptography

In order to make use of hyperelliptic curve of genus g ≥ 2 for cryptographic applications, we must obtain
finite groups from their Jacobians. For an elliptic curve that was defined over a finite field Fq, we could
restrict the curve to the set of points whose coordinates are in Fq.

5.1 The Frobenius Map and Finite Subgroups of Jacobians

Let C : y2 = f(x) be a hyperelliptic curve defined over a finite field Fq, with Jacobian J . Let φ be the
Frobenius endomorphism for Fq, i.e. φ(x) = xq. We extend φ to divisors by defining φ (

∑
i[Pi]) =

∑
i φ([Pi]),

where φ([∞]) = [∞] and φ([(x, y)]) = [(xq, yq)].
A divisor D ∈ Div(C) is defined over Fq if φ(D) = D. Note that D can be defined over Fq even if it

contains points with coordinates outside Fq. The points that φ does not fix are instead permuted to other
points in D. We say that a divisor class A ∈ J is defined over Fq if there exists some divisor D ∈ A such
that φ(D) ∈ A as well, or equivalently, φ(D)−D is a principal divisor. It can be shown that the principal
divisors Div∗(C) are closed under φ, from which it follows that for all other D′ ∈ A, φ(D′) ∈ A. In other
words, each divisor class in J is either closed under φ or gets mapped completely outside itself. We define
J(Fq) to be the set of all divisor classes that are defined over Fq.

If R is a reduced divisor, then so is φ(R), since deg(R) = deg(φ(R)). Every divisor class A ∈ J contains
a unique reduced divisor R, so if A is defined over Fq, then so is R. In general, if (U, V) is the Mumford
representation of a reduced divisor R, then the representation of φ(R) is (Uφ, V φ), where the superscripts
denote applying φ to the coefficients of U and V . So if R is defined over Fq, then it must be that Uφ = U
and V φ = V , which is to say that the coefficients of U and V lie in the fixed field Fq of φ. Conversely if
U, V ∈ Fq[x], then the divisor corresponding to (U, V) must be defined over Fq. Therefore, the divisor classes
in J(Fq) are exactly those represented by polynomials in Fq[x].

18

Theorem 8 Let C be a hyperelliptic curve of genus g defined over Fq with Jacobian J . Then J(Fq) is a
finite subgroup of J .

Proof. J(Fq) consists of the divisor classes in J that are represented by pairs of polynomials U, V,∈ Fq[x].
Since deg(V) < deg(U) ≤ g, there is a finite number of representations (U, V), and so J(Fq) is finite.

We already know that the identity in J , Div∗(C), is defined over Fq. Let A1 and A2 be divisor classes
in J(Fq) with respective reduced divisors R1 and R2. Clearly, ω(R1) is a reduced divisor, and because
R1 + ω(R1) ∈ Div∗(C) ([10, Proposition 13.3]), the inverse of A1 is the divisor class containing ω(R1).
Observe that for any affine point (x, y) ∈ C,

φ(ω([(x, y)])) = [(xq,−yq)] = ω(φ([(x, y)])),

so ω(R1) is also defined over Fq, implying that −A1 ∈ J(Fq). Finally, φ(R1+R2) = φ(R1)+φ(R2) = R1+R2,
so J(Fq) is closed under the Jacobian group operation.

Example 5.1 Consider the genus 2 hyperelliptic curve C : y2 = x5 + x + 1, defined over F5, and let J
denote the Jacobian. The pairs (x+ 1, 3) and (x2 +x, x+ 4) represent divisor classes in J(F5). The greatest
common divisor of x + 1, x2 + x, and 3 + (x + 4) = x + 2 is 1, and our Euclidean coefficients are h1 = 4,
h2 = 0, and h3 = 1. Therefore, we let

V0 = 4(x+ 1)(x+ 4) + 3(x+ 4) + (x5 + x+ 1) = x5 + 4x2 + 4x+ 4.

We compute
U ′ = (x+ 1)(x2 + x) = x3 + 2x2 + x and V ′ = V0 % U ′ = x+ 4.

Since deg(U ′) = 3, we must apply the reduction procedure. Observe that f−V ′2
U ′ = x2 +3x+3, so we reassign

U ′ to this polynomial. Then we reassign V ′ to −V ′ % U ′ = 4x+ 1, and finally return the pair (U ′, V). �

5.2 Concluding Remarks: Complexity, Discrete Logarithms, and Encodings

Now that we have obtained a finite group J(Fq) from the Jacobian of a hyperelliptic curve C, we may
postulate about DLP-based cryptosystems implemented with these groups. Perhaps the most important
factor to consider is the size of J(Fq). In [11], André Weil proved a generalization of Hasse’s Theorem which
states that the size of J(Fq) satisfies

(
√
q − 1)2g ≤ #J(Fq) ≤ (

√
q + 1)2g.

That is, given a hyperelliptic curve of genus g and a finite field of size q, we may obtain a finite abelian
group whose size is of order Θ(qg).

While the size of the group must be large in order to provide security, its operation must be easily
computable so that the cryptosystem is practical. In this finite context, the inputs to Cantor’s Algorithm
are two pairs of polynomials, all of which lie in Fq[x] and have degree at most g. The algorithm consists
wholly of polynomial arithmetic, mainly finding quotients and remainders, and this can be done quickly,
especially since the coefficients have a fixed size. Overall, Cantor’s Algorithm as depicted above requires
O(g3) operations in Fq ([4, Section 2.5]).

We may also consider the space complexity of a point on J(Fq). For an elliptic curve, whose genus is
1, an affine point is identified by two coordinates in Fq. In general, if C has genus g, then as previously
mentioned, each point in J(Fq) is represented by two polynomials U, V,∈ Fq[x] where U is monic and
deg(V) < deg(U) ≤ g. We store a polynomial by storing the values of its coefficients. Because U is assumed
to be monic, we only need to store at most g − 1 values in Fq. Similarly, deg(V) ≤ g, so we store at most
g − 1 values to represent V as well. If q = pe, and if we represent a value in Fq using e coordinates in Fp
and a basis for the vector space Fq/Fp, where each coordinate is a binary integer between 0 and p− 1, then
the storage required to represent a point on J(Fq) is of order O(ge log(p)) = O(g log(q)).

19

In the notation of hyperelliptic curves, the discrete logarithm problem is: given A,B ∈ J(Fq), where
A = kB, determine k. Alternatively, we could say that we are given two divisors D1 and D2 that represent
classes in J(Fq), where D1 ≡ kD2. The Baby Step–Giant Step algorithm works for an arbitrary group of

order N , and returns an answer in time O(
√
N). Since #J(Fq) is approximately qg, we should expect Baby

Step–Giant Step to complete in time O(qg/2).
However, when g is large, there is another algorithm, based on index calculus, that performs better than

baby Step–Giant Step. In §1.1.1 we used index calculus to solve discrete logarithms in F×p by factoring
group elements using factorizations in Z. A linear system of congruence relations solved the DLP for all
elements in our chosen factor base B, which allowed us to compute the logarithms of any element that
factored completely over B.

Let C be a hyperelliptic curve of genus g ≥ 2 that is defined over Fq, and let D ∈ Div0(C) be a semi-
reduced divisor that corresponds to the pair of polynomials (U, V) where U, V ∈ Fq[x]. [10, Proposition
13.12] states that if we can factor U(x) =

∏
i Ui(x) in Fq[x], then we can separate D into

∑
iDi, where Di

corresponds to (Ui, Vi) and Vi = V % Ui. A semi-reduced divisor D ∼ (U, V) is prime if deg(U) ≥ 1 and U
is irreducible in Fq[x].

Because we may factor divisors, and therefore also factor divisor classes in J(Fq), by factoring polynomials,
we may apply index calculus. Pick a positive integer B, then enumerate all Mumford representations (Tj ,Wj)
such that Tj is irreducible. This will be our factor base. Let Di ∼ (Ui, Vi) for i = 1, 2. To compute the
logarithm, base D2, of D1, compute the Mumford representation (U, V) for mD1 +nD2 for random integers
m,n. If (U, V) factors in our factor base, then we obtain a congruence mD1 + nD2 ≡

∑
j cj(Tj ,Wj). After

accumulating enough of these relations, we may obtain a relation m0D1 + n0D2 ≡ 0 and solve for D1.

There exists index calculus algorithms for Jacobians of hyperelliptic curves which run in timeO
(
g5q2−

2
g+1+ε

)
,

where ε > 0 is arbitrarily small (see [9]). For all g ≥ 3, we have

2− 2

g + 1
+ ε <

g

2
.

If we fix g to be a constant greater than 2, then the running time for index calculus is less than the running
time for Baby Step–Giant Step (with respect to q). That is,

O
(
q2−

2
g+1+ε

)
< O

(
q
g/2
)
.

In other words, for a given hyperelliptic curve C of genus g ≥ 3, index calculus is more efficient than Baby
Step–Giant Step for computing discrete logarithms in J(Fq). For this reason, genus 2 hyperelliptic curves
are considered to have the most potential for cryptographic applications.

The final requirement for implementing a hyperelliptic curve cryptosystem is an encoding procedure.
Rather than encode messages as points on a curve, we require a method that maps a message to a divisor
class in the Jacobian of the curve. Much work has been done in recent years to develop encoding procedures
(see [3] and [5]). As it turns out, encodings onto the curve C itself can be useful for encodings onto J(Fq).
The basic idea is to associate a message m with a set of points, which can then be used to construct a divisor
D that represents a divisor class in J(Fq).

However, these results are relatively new. Although there exist efficient encoding algorithms, there does
not yet seem to be an industry standard with which to implement hyperelliptic curve cryptosystems.

20

Appendix

A Baby Step–Giant Step, and the order of P ∈ E(Fq)
We can use the Baby Step–Giant Step algorithm to solve the discrete logarithm problem. If P and Q

are points on an elliptic curve E(Fq), then this algorithm either finds an integer n such that nP = Q or
determines that no such integer n exists. Let P ∈ E(Fq), and suppose we want to find the order of P ,
denoted |P |, which is the smallest positive integer k such that kP = ∞. In a sense, finding the order of P
is like computing the discrete logarithm of ∞, base-P . However, Algorithm 1 will return the trivial solution
n = 0, so we will modify it so that it returns a positive value.

I Remark The modified Baby Step–Giant Step algorithm does not return k = |P |, but only some positive
integer n such that nP =∞. By Lagrange’s Theorem, nP =∞ if and only if k | n, so we know that n = k
if n has no proper divisor d such that dP =∞. Furthermore, we only need to test n/p for each prime p that
divides n. Consider the contrapositive: Suppose k | n, but k 6= n. Let p be a prime divisor of n/k, which
implies that p | n. Therefore pk | n, and we may divide out by p to obtain k | n/p, so that (n/p)P =∞. If n
fails the test, so (n/p)P =∞ for some prime p | n, then we recurse to n/p.

We still need to find some n > 0 such that nP = ∞. To do this, we compute two lists of multiples
of P such that there is a guaranteed match between them k1P = k2P , where k1 6= k2. Then, we may let
n = |k1 − k2| > 0, and move onto the recursive part of the algorithm. The guarantee that such a match
occurs comes from the following lemma (4.20 in [10]).

Lemma 1. Let a and m be integers with |a| ≤ 2m2. Then there exist integers a0 and a1 with −m < a0 ≤ m
and −m ≤ a1 ≤ m such that

a = a0 + 2ma1.

Proof. Let a0 ≡ a (mod 2m), with −m < a0 ≤ m, and a1 =
a− a0

2m
. Then by the triangle inequality,

|a1| ≤
|a|+ | − a0|
|2m|

≤ 2m2 +m

2m
< m+ 1.

Let N = #E(Fq) (recall that this means NP = ∞), and then let a = q + 1 − N . If m > 4
√
q, then

Hasse’s Theorem implies that |a| ≤ 2
√
q < 2m2. By the previous lemma, there exist integers a0 and a1 in

the specified range such that

a = q + 1−N = a0 + 2ma1 =⇒ q + 1− 2ma1 = a0 +N.

Therefore, we obtain (q+ 1− 2ma1)P = (a0 +N)P = a0P , so we may pick |q+ 1− a0− 2ma1| as our initial
value in the recursive procedure to compute |P |.

Our algorithm will find a0 and a1 by virtually trying all possible pairs of values. The first step of the
algorithm will be to compute all multiples iP for i = 0, 1, . . . ,m, where i corresponds to a0. In truth, a0
varies from −m to m, but −iP is just iP with the y-coordinate flipped, so it’s easier to check for a match
using the x-coordinate and then deduce whether the matching i value should be negated. Next, we compute
(q+1+2mj)P for j = −m,−(m−1), . . . ,m. (Here, j corresponds to a1, and the +2mj vs. −2ma1 difference
doesn’t matter because of how a1 varies.) Our choice of m guarantees that some value of j will obtain a
point that matches, or is the inverse of, one of the iP ’s.

I Remark How do we know that we do not stumble on a trivial match? It does not help us if q+1−2ma1 =
a0. We will never have this problem if q+ 1− 2mj 6= i for all possible values of i and j. Say that we always
pick the smallest value possible for m, which is b 4

√
q + 1c. Then, we will have no trivial matches as long as

q + 1− 2(4
√
q + 1)2 > 4

√
q + 1

because the lefthand side is a lower bound for q + 1− 2mj and the righthand side is an upper bound for i.
Fortunately, this inequality is satisfied for all q ≥ 23.

21

I Remark Notice that the explicit value of N = #E(Fq) was only needed for the proof of correctness of
this algorithm, not the algorithm itself. In other words, we can run this algorithm even when N is unknown.
The only value we need to know is q.

References

[1] David G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math. Comp., 48(177):95–101,
1987.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to algo-
rithms. MIT Press, Cambridge, MA, third edition, 2009.

[3] Pierre-Alain Fouque and Mehdi Tibouchi. Deterministic encoding and hashing to odd hyperelliptic
curves. In Pairing-based cryptography—Pairing 2010, volume 6487 of Lecture Notes in Comput. Sci.,
pages 265–277. Springer, Berlin, 2010.

[4] Michael Jacobson, Jr., Alfred Menezes, and Andreas Stein. Hyperelliptic curves and cryptography. In
High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams,
volume 41 of Fields Inst. Commun., pages 255–282. Amer. Math. Soc., Providence, RI, 2004.

[5] Jean-Gabriel Kammerer, Reynald Lercier, and Guénaël Renault. Encoding points on hyperelliptic curves
over finite fields in deterministic polynomial time. In Pairing-based cryptography—Pairing 2010, volume
6487 of Lecture Notes in Comput. Sci., pages 278–297. Springer, Berlin, 2010.

[6] Neal Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177):203–209, 1987.

[7] Daniel Shanks. Class number, a theory of factorization, and genera. pages 415–440, 1971.

[8] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 7.5.1), 2017.
http://www.sagemath.org.

[9] Nicolas Thériault. Index calculus attack for hyperelliptic curves of small genus. In Advances in
cryptology—ASIACRYPT 2003, volume 2894 of Lecture Notes in Comput. Sci., pages 75–92. Springer,
Berlin, 2003.

[10] Lawrence C. Washington. Elliptic curves. Discrete Mathematics and its Applications (Boca Raton).
Chapman & Hall/CRC, Boca Raton, FL, second edition, 2008. Number theory and cryptography.

[11] André Weil. Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc., 55:497–508,
1949.

22

	A Computational Introduction to Elliptic and Hyperelliptic Curve Cryptography
	Repository Citation

	tmp.1589820119.pdf.2V2DZ

