
Oberlin Oberlin

Digital Commons at Oberlin Digital Commons at Oberlin

Honors Papers Student Work

2018

Generative Processes for Audification Generative Processes for Audification

Judith Jackson
Oberlin College

Follow this and additional works at: https://digitalcommons.oberlin.edu/honors

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Jackson, Judith, "Generative Processes for Audification" (2018). Honors Papers. 159.
https://digitalcommons.oberlin.edu/honors/159

This Thesis - Open Access is brought to you for free and open access by the Student Work at Digital Commons at
Oberlin. It has been accepted for inclusion in Honors Papers by an authorized administrator of Digital Commons at
Oberlin. For more information, please contact megan.mitchell@oberlin.edu.

https://digitalcommons.oberlin.edu/
https://digitalcommons.oberlin.edu/honors
https://digitalcommons.oberlin.edu/students
https://digitalcommons.oberlin.edu/honors?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.oberlin.edu/honors/159?utm_source=digitalcommons.oberlin.edu%2Fhonors%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:megan.mitchell@oberlin.edu

Generative Processes for Audification

Judy Jackson

April 23rd, 2018

Abstract

Using the JavaSerial library, I present a generative method for the
digital signal processing technique of audification. By analyzing multiple
test instances produced by this method, I demonstrate that a generative
audification process can be precise and easily controlled. The parame-
ters tested in this experiment cause explicit, one-to-one changes in the
resulting audio of each test instance.

1 INTRODUCTION

Beginning in the early twentieth century, composers have sought to utilize the
sounds of a technologically evolving society in their musical practice. In 1913,
the Italian Futurist composer, Luigi Russolo, famously called for the full in-
corporation of industrialization sounds (‘noise-sounds’) into classical music. He
captured these sentiments and ideas for their execution in his seminal manifesto,
The Art of Noise [7]. Russolo’s manifesto earned him the title of “the grandfa-
ther of noise music” and laid the groundwork for generations of composers to
interface with the various screeches and crashes of the future.

This paper explores a new approach to generating complex sonic material for
the purpose of composing electronic music. Through the use of the JavaSerial
library, composers can craft small modules from data structures and arrange
them into various combinations to create larger-scale pieces.

Since 1913, various technological innovations have spurred the birth of a
wide variety of electronic music disciplines. The invention of vacuum tubes
permitted the creation of smaller, more efficient electronics, and marked the
birth of analog synthesizers and synthesized music. Magnetic tape, a product
of World War II, allowed composers to capture any sound in the real world and
place it in space and time for playback as a musical composition. Likewise, the
invention of the computer (and later, the laptop computer), spawned an entire
discipline of composition focusing on the creation and modification of digital
audio signals. This practice is known as digital signal processing (DSP) [7].

The fundamental principle of DSP techniques is the analysis and transforma-
tion of five basic parameters of sound: amplitude, frequency, envelope, timbre,
and duration. Amplitude describes the intensity or ‘loudness’ of a sound, and

1

Figure 1: Diagram for an amplitude envelope [16]

uses the unit of decibels, abbreviated dB. The decibel scale ranges from -100 to
100 dB and displays a logarithmic curve. Digital audio representations convert
this curve to a 0.0 to 1.0 floating point scale. Frequency corresponds to the
‘pitch’ of a sound. Representing the number of cyclic repetitions per second of
a signal, it is denoted with the unit Hertz (Hz). Human hearing ranges roughly
from 30 Hz to 20 kHz: a concert A4 (the note an orchestra tunes to) is 440 Hz.
Any signal lower than 30 Hz is described as sub-audio, and is perceived sonically
as a rhythm (or clicks at a steady tempo), rather than a pitch. Envelope de-
scribes the curve of a sound’s amplitude, and is broken down into attack, decay,
sustain, and release. Attack refers to the beginning of a sound (the movement
from silence to sound), decay and sustain to the middle (the change in amplitude
following the attack), and release to the end (the movement from sound back
to silence). The description of a sound’s envelope is oftentimes referred to as
an ADSR curve (Figure 1), where A=attack, D=decay, S=sustain, R=release.
Some sounds, like the hit of a snare drum, display very sharp envelopes with
very short attacks and decays, while others, such as a flute playing a long
sustained note, display a smoother envelope with gradual attacks and decays.
ADSR curves are analogous to crescendo and decrescendo dynamic markings in
acoustic music.

Timbre describes the quality, or ‘color,’ of a sound, and refers to its frequency
content. The timbre of a sound is what allows the ear to distinguish between a
clarinet and a piano playing the same note. A sound’s timbre is determined by
the number and amplitude of its overtones. Each sound exhibits a fundamental,
or a frequency that the ear determines as the pitch of the sound. In addition to
the fundamental, a sound presents a series of overtones (also referred to as par-
tials), or frequencies higher and softer than the fundamental that give a sound
its color. With more tonal sounds, these overtones fall within the harmonic
series, a set of frequencies that are integer multiples of the fundamental. Some
sounds contain inharmonic partials, or overtones outside the harmonic series, in
addition to harmonic ones, which give them a ‘noisier,’ ‘diritier,’ quality. Tim-
bre, like other sound parameters, exists on a continuum. On one end of the
continuum is the sine wave, which contains only the fundamental (with no over-
tones). Because sounds in the natural world always contain overtones, the sine

2

Figure 2: Sonogram for signal with only harmonic overtones (top) and for a
noisy signal (bottom)

wave sounds very smooth and alien: the clarinet is its closest approximation in
the real world. On the other end of the spectrum is white noise, which contains
random frequencies at equal amplitudes. All sounds fall somewhere between
the two: referring to a sound as “noisy” means that its timbral content contains
many inharmonic overtones and that it is aurally similar to white noise (Figure
2). A sound’s spectral content is often displayed visually with a spectrogram (or
sonogram), which shows its timbral components and their amplitudes. In this
paper, spectrograms will be represented with frequency (in Hz) on the x-axis
and amplitude on the y-axis.

Finally, the duration of a sound refers to the length of its sounding (the time
marking a sound’s movement from silence to sound and back to silence). Dura-
tion can be described with standard time units (milliseconds/seconds/minutes)
or with traditional music notation (eighth notes, quarter notes, etc). All DSP
techniques rely on some combination of these basic parameters [7].

Current DSP research divides loosely into three main techniques: granular
synthesis, convolution and digital synthesis. Both granular synthesis and con-
volution focus on the analysis and transformation of an existing audio signal,
whereas digital synthesis seeks to mimic analog synthesis by performing the
combinations originally done with electrical oscillators within a computer.

The technique of granular synthesis relies on the division of a digital audio
signal into small pieces, or grains. These grains are then transformed and re-
combined in various ways (Figure 3, 4). Research on this technique focuses both
on the modification of individual grains and the methods used to re-synthesize
them into a continuous signal. The former approach allows composers control
over parameters such as the amplitude, timbral content, and envelope of each
grain. Grain-level processes can be uniform (each grain goes through the same

3

Figure 3: The process of granular synthesis

Figure 4: The process of granular synthesis

transformation), or specific (each grain receives a set of parameters unique from
the others). Oftentimes, composers apply aleatoric processes to the latter ap-
proach: for example, a random number generator can determine the modified
amplitude of each grain. When re-synthesizing the grains, composers control
parameters such as grain order and playback speed [11].

Current DSP research continually presents novel approaches to grain modifi-
cation and recombination, but the sonic results of these techniques always sound
like granular synthesis. While the computational feat involved with executing
the new approach may hold merit from a scientific standpoint, its artistic results
fail to offer composers new sonic material with which to compose.

The technique of convolution involves the application of the Fast Fourier
Transform (FFT) onto an audio signal. Like any complex signal, an audio
signal can be reduced to a series of sine waves of various frequencies and ampli-
tudes. The amplitudes and frequencies of these sine wave components provide
composers with a sound’s spectral components, or the set of data describing its
timbre: the combination of these frequencies at these amplitudes are what make
the sound of a dog barking different from the sound of a car driving by [11].

The data provided by FFT analysis acts as the foundation for an entire
host of computer music techniques: reverb (the sound of an object in a spe-
cific space), filtering (a technique that allows only certain frequencies to pass
through), speech synthesis, and cross synthesis (transforming one sound into
another) all rely on FFT for their execution (Figure 5). Because of this, all of
these techniques can be grouped into one subset of DSP research, which will
be referred to as convolution in this paper. The basis of convolution techniques
is as follows: a composer analyzes a sound using FFT, modifies its spectral

4

Figure 5: Spectrums for a sample before (left) and after (right) applying reverb

Figure 6: The process of digital synthesis

components through deletion, amplification, attenuation, or addition, and re-
synthesizes it to produce new sonic material. This method can be used to place
an existing sound in a new space (i.e. one can make the sound of a dog barking
into the sound of a dog barking inside a cathedral), to time stretch a sound with-
out changing its pitch (one simply extends the durations of each of the partials
to the desired amount), or to place a new sonic envelope onto an existing sound
(i.e. one can make a wind sample sound as if it is saying words like a human), to
name a few [11]. However, like granular synthesis, convolution techniques dis-
play a distinct sonic flavor. Any sound modified by this technique sounds like a
convolution transformation–regardless of how novel the technological approach
used to create it, it remains within the same sonic palette.

Digital synthesis seeks to recreate the technique of analog synthesis within
a computer (Figure 6). Analog synthesis creates sound by using mathematical
processes to combine basic waveforms. Analog synthesizers contain electrical
oscillators that produce some combination of sine, triangle, square (or pulse),
and sawtooth waves. These basic waveforms are named for the shape they
produce when the oscillator’s current is displayed visually with a oscilloscope.

Each of these basic waveforms possess known overtone structures (Figure
7) that make their combinations predictable and standardized. Some of these
techniques include frequency modulation, amplitude modulation, ring modula-
tion, and filtering. These processes are easily identifiable by a trained ear and
can be recreated from synthesizer to synthesizer. In digital synthesis, these
waveforms are created by plotting their phase, shape, and period to a bitstream.

5

Figure 7: Basic waveforms and their overtone structures [11]

Standard synthesis techniques can then be performed on these bitstreams using
basic computational procedures (for example, ring modulation is performed by
multiplying the two signals together) [3]. As a result, composers can control
these techniques easily and precisely.

Each of the aforementioned techniques is backed by a supple body of aca-
demic research. The composer looking to apply and extend these techniques can
access a multitude of resources that explain their technological infrastructure
and the manners in which they can be manipulated to produce known sonic
results. However, recent research has focused mostly on redesigning and ex-
tending these techniques. As a result, little effort has been put into discovering
new methods of manipulating digital audio by the academic community.

This lull in innovation in academia stands in stark contrast to the work
being done by composers in non-academic, underground electronic music scenes.
Many of the software programs designed by institutions end up in the hands of
experimental musicians, who push the programs past their capabilities in order
to create new sonic material. Musicians refer to this genre of music by many
names, one of which is glitch audio [4].

Glitch refers to a variety of music making techniques, such as misusing noise-
reduction software, reading non-audio files (such as .pdf and .txt files) as audio,
and causing compact discs to skip. While the methods vary, the purpose be-
hind them unites the genre: glitch artists force technology to fail and capture
the results in order to produce art. Glitch techniques tend to rely heavily on em-
pirical methods: Artists try different combinations until they find results they
like. As a result, the artist lacks information as to how and why a specific result
occurred, and little research exists to explain the scientific and computational
underpinnings of this practice [4].

This paper explores one technique of glitch audio that involves reading bi-
nary data as uncompressed audio files (.wav files). Dombois and Eckel define
the term audification as “interpreting any kind of one-dimensional signal as
amplitude over time and playing it back on a loudspeaker for the purpose of
listening” [5] and I will refer to this technique and the sonic results it produces
as data audification and audifications, respectively. Data audification is com-
monly confused with a practice known as data sonification. Data sonification,
however, refers to the process of mapping a data set to predefined sonic events

6

or parameters, and requires a composer to decide how variance in the set affects
the sounds or parameters over time. Data audification is simply the process
of reading any file as an audio file; the content of the file still affects the sonic
result, but the composer has no choice over the result aside from choosing which
files to audify.

An understanding of how digital audio is stored and played back by a com-
puter is required in order to better understand the computational processes in
action behind audification. A common file format for storing uncompressed
audio data is the .wav file. For the purposes of this paper, all audifications
created and analyzed will be stored in .wav format. A .wav file consists of a
header, which contains the format specifications of the file, and a ‘data’ section
of variable length, which relays the sonic information of the file. The 44 bytes
of the header contain information identifying the file as a .wav file, as well as
the sampling rate, bit depth, and number of channels of the audio relayed by
the data section. The sampling rate of the file determines the number of data
points in a second of audio, and the bit depth determines the amplitude resolu-
tion of the signal. The digital to analog converter (DAC) reads the data section
of the .wav file according to the method outlined in the header. Given a mono
.wav file with a 44.1kHz sampling rate and signed 8-bit bit depth, the DAC
constructs a waveform by reading 1 signed, 8-bit value at a time, in little endian
form, when using PCM encoding, from the data section, and plotting 44,100
values per 1 second of audio. Likewise, the DAC converts files with bit depths
of 16-bit, 24-bit, and 32-bit float by reading in 1 signed 16-bit short integer, 1
signed 24-bit integer, or 1 signed 32-bit floating- point value at a time (Figure
8). Files with higher sampling rates contain a larger number of data points per
second of audio, so they create higher resolution waveforms and higher fidelity
sound. Files with more than one channel interleave the data for each channel:
with stereo files, value a[i] corresponds to the left channel, value a[i + 1] to the
right channel, value a[i + 2] to the left channel, and so forth. For the purpose
of this paper, analysis of the digital to analog conversion process will be based
on mono, 44.1kHz, signed 16-bit PCM .wav files [12].

Many digital audio editing programs, such as Audacity, Amadeus, and SoX,
contain a raw data function that allows the user to read any file on their com-
puter as an audio file. The raw data function treats the given file as a .wav
file without a header: The user manually inputs values for sample rate, bit
depth, and encoding. Then, the program uses these specifications to generate
a waveform from the values of the file as it would with the data section of a
.wav file. This method produces unique sonic results with high levels of timbral
and rhythmic complexity, and are unlike those generated by standard synthe-
sis or DSP processes. Specifically, they demonstrate an irrationality in timbral
content and rhythm that differentiate them from the mathematical products of
standard synthesis. The correlation between binary code segments and their au-
difications becomes more clear through analyzing the underlying mathematical
structure of the digital to analog conversion process. Consider a file F contain-
ing n repetitions of a byte sequence S = b0, b1, ..., bi, where bj , 0 ≤ j ≤ i is one
byte. The file contains only unvaried repetitions of S and therefore represents

7

Figure 8: The process of audification

a periodic function. Thus, when audified, it produces a tone with consistent
frequency and timbre. As a result, we can analyze the file and its audification
like any other periodic function (i.e. the sine function). The frequency, repre-
sented in Hz, of the resulting tone can be calculated using the length S in bits,
a sampling rate, R, and a bit depth, D:

Hz =
R ∗D
|S|

The byte content of S directly affects the timbral content of its audification,
albeit in a less mathematically explicit way. As previously mentioned, the DAC
derives the shape of the waveform by plotting each sample x at the sample rate,
with each point being |x| = D bits long. Reading a sample xk as a numeric
value, whose type is specified by D (i.e. reading a sample as a signed, 8-bit
short with little-endian encoding), returns the value of the waveform at index
k. Thus, a sequence’s byte content affects the timbre of its audification.

If S is too long or too short, the audification will result in a sub-audio
frequency or a frequency too high for human perception (i.e, given 44.1kHz, 8-
bit specifications and a 30Hz-20kHz range of human hearing, S must be between
2.2 bytes and 1470 bytes long). Likewise, if the sample values calculated from
S are too random (especially if S is long), individual instances of S become
indistinguishable and the file loses its periodic characteristic. As a result, the
audification of the file produces a sound that is more noise than tone. If one
generates a binary file using a random number generator, the audification of the
file will be white noise. In fact, generating white noise for DSP system testing
relies mainly on random number generators [6].

Finally, the size of the file L, in bits, directly corresponds to the length T of
the audification in seconds. Again, this can be demonstrated mathematically,
given a sample rate R and a bit depth D:

8

T =
L

R ∗D
Using this knowledge, one can begin to explore how existing file types man-

ifest as audio. Understanding the audifications of standardized file formats lays
the groundwork for applying this knowledge to generating new binary sequences
in order to create new sounds.

An analysis of various file types and their binary structures reveals that
the format specifications directly influence the audification of a file. Simple
structures, such as .txt files produce simple audifications, and more detailed
formats, such as .psd files produce highly dynamic, complex sonic products.

Non-musical files are file types intended for functions other than storing
audio data. These include, but are not limited to, files storing image data
(.bmp, .jpeg, .tiff, etc.), files storing text data (.txt, .pdf, .docx, etc.), files storing
executable code (.exe, .maxpat, etc.) and files containing data about a device
or computer (.log, .diag, etc.). I examined .txt (text files), .bmp (uncompressed
bitmap image) files, and .psd (Adobe Photoshop) files specifically. File format
specifications designate the byte content and structure of a file. Files of the same
type are outlined by the same file format specification. Each file type follows a
structure that remains more or less consistent between instances of that type.
For example, every .wav file has a 44-byte header followed by a variable-length
data section, and begins with the file signature for a .wav file [12]. Consistent
structuring of a file type manifests itself in the audifying process. This means
that files of the same type will sound more similar to each other than files
of different types. The relation between a file’s format specifications and its
audification can be demonstrated through an analysis of the structures of three
file types: .txt files, .bmp files, and .psd files.

A simple example of the correlation between file types and their audifications
is the .txt file (text file). A text file contains no headers and its binary data
is simply an ASCII encoding of its text content (each character is represented
by a value from 0-127). Therefore, the text content of the file directly impacts
its audification. Consider two text files with different contents: File A contains
a large, alphabetized word list, and File B contains the entire text of Jane
Austen’s Pride and Prejudice. The content of File A is structured because it
contains sections of variable-length words that start with the same character
and are delineated with a space. The structured nature of the con- tent creates
a slightly rhythmic audification. In comparison, File B contains a more uniform
distribution of characters, making its byte sequences more random. As expected,
the audification of this file is simply noise (Figure 9).

In contrast, uncompressed .bmp files (image bitmaps) exemplify a more
structured and complex file format. The structure of a .bmp file can be broken
down as follows:

–a file header (14 bytes) identifying the file as a .bmp
–an image header (40 bytes) that specifies the dimensions, format (bits/pixel),

and compression method of the image (this analysis examines uncompressed

9

Figure 9: Spectrograms for .txt of large dictionary (top) and for .txt of ‘Pride
and Prejudice’ (bottom)

.bmp files)
–a variable-length color table (not always present) that provides a lookup

table matching pixel values to colors
–the pixel/image data (variable length), which lists values pixel by pixel,

row by row, top to bottom. In uncompressed .bmp files, the pixel value is equal
to its RGB value. Each row of pixel data begins with a double word (4 bytes),
which distinguishes rows from each other [14]

The relatively small byte sizes of the headers make their impact on the
audification of the file negligible. This means that the resulting sound essentially
reflects the content of the pixel data section. Audifications of .bmp files produce
tones with consistent frequencies: the length of the pixel rows (the width of the
image) determines the frequency of the tone. In this case, the row acts as
the repeating byte sequence, and distinguishing individual sequences is made
possible by the double word beginning each sequence. The values of the pixels
in the row (the RGB value) determine the timbre of the resulting tone, and the
height of the image determines the duration of the tone (due to the fact that
the height determines the number of rows, or the number of repetitions of the
sequence). This behavior becomes apparent when comparing a control .bmp
file to other .bmp files that vary in color, image width, and image height when
compared, as seen in Figure 10.

Adobe Photoshop files (.psd files) rely on a file format that presents an
even higher level of structure and complexity. An analysis of six .psd files
containing black and white animations demonstrates the correlation between

10

Figure 10: Spectrograms for different .bmp files

the structure of .psd files and their audifications. Although the six files varied in
size and subsequent audification duration, each demonstrated a consistent sonic
structure from file to file. The file format specification for .psd files reflects this
consistency. Each .psd file follows the general structure outlined in Figure 9 [9]:

The ‘Layer and Mask Information’ section contains two subsections, ‘Layer
Records’ and ‘Channel Image Data’, that produce structurally important com-
ponents of the audification. Using the details in the .psd file format specification,
one can map the byte structures contained in the file to sonic sections in the
audification. Each of the audifications of the six files contained three distinct
sonic sections:

1. Section 1 consisted of a timbrally complex, high pitched tone that varied
slightly in frequency and noisiness. The tone exhibited a rhythmic beating that
varied slightly in tempo. An analysis of the parsed .psd file revealed that this
section corresponded to the ‘Layer Records’ portion of the file’s binary data.
Photoshop allows a user to construct an image with ‘layers’. The binary data
in this section provides an overview of each layer, such as specifications for
the number of channels, the masking parameters, and the blend data in the
layer. The overview for each layer is relatively rigid in terms of its byte size
and composition. Because each layer contains more or less the same amount
and type of binary data, the audification of this section produces a tone with
relatively consistent frequency and timbre, with slight fluctuations. Each layer’s
overview is padded with null bytes (0x00) at the end for rounding purposes. Null
bytes produce silence when audified (the resulting waveform has 0 amplitude),
so the padding produces the rhythmic effect present in the audification of this
section. The slight variance in the tempo of the rhythm stems from variations
in the size of each layer data sequence and the amount of padding present in

11

Figure 11: Outline of .psd file format

the sequence.
2. The second sonic section featured narrowly banded, high frequency noise

gestures that appeared in tuples of three. These gestures varied in pitch, nois-
iness, and duration from grouping to grouping, but gestures within each group
of three demonstrated the same sonic characteristics. This sonic section corre-
sponds to the ‘Channel Image Data’ portion of the .psd file. The amount of
image data varied from layer to layer, causing the tuples to vary in pitch and
duration. Each gesture in the tuple corresponds to the R, G, and B data for
each layer, hence their appearance in threes in the audification. The original
Photoshop files were black and white, so the R, G, and B values for each layer
were all the same and created the consistency in timbre within a tuple. The
ratio of black to white in the original file varied from layer to layer, causing the
variance in timbre between tuples.

3. The final sonic section featured three gestures similar to a tuple created
by the Channel Image Data section. However, these gestures had significantly
longer durations (about 3 seconds/gesture, compared to milliseconds/gesture
in the Channel Image Data section). This sonic section corresponded to the
‘Image Data’ portion of the file, which contains the RGB values for the entire
file. Again, the .psd files in question are uncompressed so the data in this section
is stored in planar form: All the R values of all of the layers are followed by
all the G values for all of the layers, which are followed by all the B values
for all of the layers in the file. Because the original files were black and white,
each gesture contained the same byte content. Therefore the R, G, and B byte
sequences in this section produced three gestures of identical duration, pitch,
and timbre in the audification.

12

Figure 12: Sonogram picture found in Aphex Twin’s ‘Equation’ [1]

To summarize, similar byte contents and structures in files of the same type
create similar audifications. Files with higher levels of complexity and structure,
such as the .psd files, produce more complex audifications, whereas simpler for-
mats, such as .bmp files, produce simpler audifications that are tones instead of
complex gestures. These conclusions prove helpful when designing a generative
approach to glitch audio. In order to create binary files that produce compelling
audifications, such an approach must generate structured, slightly varied repe-
titions of binary sequences that have some degree of complexity. The JavaSerial
library allows users to write any data structure in a Java program to a binary
file, thus meeting all the requirements necessary. The experiment described
in this paper demonstrates the execution of this method and its application
towards generating innovative sonic material.

2 RELATED WORKS

A number of experimental electronic pop artists have incorporated glitch tech-
niques into their practice by inserting image data into their music. These tracks
are commonly referred to as “easter eggs.” Several online forums dedicate them-
selves to finding these extra-musical components in artists‘ releases. One such
example of this technique is Aphex Twin’s Equation (Figure 10).

By viewing the sonogram (a visual representation of the audio file’s timbral
content), one discovers an image of the artist’s face [1]. Other examples include
the sonogram of Venetian Snares’ Look, which reveals a picture of the artist’s
cats [10], and Plaid’s 3recurring, which contains an image of repeating “3”s
[15]. While these artists all incorporate image data into their products, none of
these tracks actually directly utilize the binary data of the image files. Instead,
the artists use software programs, such as MetaSynth, to convert an image
into spectral data (partial frequencies and their amplitudes) rather than audio
sample values. Additionally, the artists employ this technique to add an extra
layer of artistry to their music rather than to capitalize on the sonic results of
the process.

13

Some contemporary classical composers have investigated DAC conversions
of binary data. However, their work mainly focuses on the aural quality of
the sonic result rather than the scientific relationship between the data and
the DAC’s output. In his seminal piece, Riverrun, Barry Truax implemented a
bitstream conversion program to perform granular synthesis, a technique that
breaks a signal into user-specified sized grains, in real time [17]. However,
Truax’s implementation aimed to create a new electronic performance technique,
and focused on the aesthetic quality of its results rather than the methodology
behind it. Therefore, little analysis exists as to how the input bitstream af-
fects the resulting grain output. European serialist composer GM Koenig also
manipulated binary data for sound production in his SSP [Sound Synthesis Pro-
gram] research. Koenig’s program produced its output by generating waveforms
from time/amplitude value pairs and transforming them through various oper-
ations. Koenig’s program provides some analytical foundations: the composer
describes the output not with traditional frequency and timbre specifications
but with a list of the operations performed on the data. Berg et. al, in their
paper about Koenig’s SSP program, note that when certain parameters are
changed in specific ways, the resulting outputs demonstrate consistent sonic
tendencies (i.e. setting the GROUP SIZE parameter to a large value concentrates
the wave’s partials around the lower frequencies) [2]. While there exists more
analysis of the relationship between the input and output of SSP, these conclu-
sions were reached through testing and analyzing multiple sample outputs and
fail to establish some generalized scientific theory relating waveshape to timbral
content.

Composer Iannis Xenakis also explored value-based waveform generation in
his GENDY program. The sonorities produced by this program, specifically
those in his piece S.709, demonstrate a striking resemblance to the audifica-
tions of Photoshop files. The program dynamically generates and modifies a
waveform by applying Markov chains to user-selected breakpoints in the sig-
nal. This process causes slight deviations in both the length and the shape of
the waveform. As a result, the program produces an output with a wavering
timbral quality and slight frequency oscillation [13]. Like Truax’s implemen-
tation of granular synthesis, Xenakis’ program focuses on the generative and
composerly aspects of the process, and lacks a thorough method of mapping the
program’s manipulations to its output. Overall, little research exists as to how
a file’s byte content affect its audification and, more generally, how a wave’s
shape corresponds to its timbral content. This work attempts to fill in some of
those gaps.

3 METHODOLOGY

One shortcoming of current audification processes is the lack of user control over
the result. While a composer can choose which files to audify, manipulating the
file’s content in a meaningful and exacting way requires the tedious process of
editing the byte values of (sometimes very large) binary sequences within a hex-

14

code editor. In choosing which files to audify, composers can develop intuition
as to which files produce meaningful results and which do not, but learning these
nuances requires audifying a large variety and volume of files. Composers can
learn which files produce what types of sounds, but understanding why these
results occur remains somewhat elusive.

Approaching audification from a generative angle can offer a solution to these
problems. By creating their own structures, composers can control exactly what
a file contains. Editing these files becomes easier: one can simply change a single
parameter within a script to make large-scale changes (as opposed to making
these changes by hand in a hex-code editor or through composing a new regular
expression each time an edit is required). Additionally, audification scripts can
be reused for different pieces, streamlining the compositional process

The JavaSerial library offers an appropriate platform with which to execute
this process. The library allows users to write data structures directly to disk,
making it ideal for creating binary files to read as audio. The library is also stan-
dardized: common data structures (such as trees), will always be represented
using the same binary code, allowing for consistency across program runs. Thus,
if composers wish to change only the content of their structures (i.e. change a
tree’s content from integers to floats), the overall framework of the structure will
stay the same, allowing composers a degree of precision in their construction
process. This standardization also allows for consistent representations across
iterations: if a composer decides that they need two more seconds of an audi-
fication of a repeating structure, they can simply write more iterations of the
structure to disk without changing the sonic palette of the audification.

Having determined that some sort of generative process within audification
may assist composers looking to utilize the technique, we must begin to explore
how to approach this method with control and understanding.

To begin an examination of what a generative audification process may con-
sist of, I designed a small, nested data structure (Figure 11). This structure
(which I will refer to as a nest) consists of trees containing random shorts
(within a specified range), stored in a linked list, with several of these linked
lists stored inside a larger linked list.

The design of this data structure factored in the following parameters:

1. The structure must have some degree of complexity (not just a simple
repeating byte sequence), but not so complex that the relation between it and
its audification becomes obscured. My analysis of existing file formats and their
audifications informed this requirement. Files with more complexity produced
more musically interesting sonic material. However, small changes in highly
complex files produce large changes in their audifications, making user manip-
ulation difficult. However, simpler files demonstrate clear correlations between
file format and audification, and leave few parameters within the file to manipu-
late. Thus, a generated data structure must have enough complexity to produce
complex audifications with a variety of possible parameter manipulations, but
not so much complexity that the user lacks control over the sonic results.

2. The size of each layer must be easily controlled. As explained, the size of

15

Figure 13: Outline of ‘nest’ data structure

a repeating byte sequence directly affects the frequency of the audification, so
control over this parameter is necessary for control over the structure’s audifi-
cation.

3. The content of each layer must be easily controlled. Again, the content
of a repeating sequence determines the waveshape (and thus the timbre) of the
audification, so control over the audification necessitates control over the struc-
ture’s content.

I controlled the following parameters within a nest in order to illuminate
how modifications to the structure affected aspects of its audification:

1. Container size: The size parameters correspond to the number of iter-
ations of each nest component. The number of nest iterations written to disk
remained fixed, due to the fact that changing this parameter simply changes the
length of the audification. The size parameter has 3 possible values, correspond-
ing to the number of iterations of a component: 20 (small), 50 (medium=default),
100 (large). When analyzing the effect of component size on audifications, only
one components’ size was changed, while the other two components remained
fixed at the default value of 50 (i.e. T SIZE=20, L1 SIZE=50, L2 SIZE=50).

a. T SIZE : the size of the TreeMap (the number of nodes stored in each
tree)

b. L1 SIZE : the size of the internal LinkedList (the number of TreeMaps
stored in each internal list)

c. L2 SIZE : the size of the external LinkedList (the number of internal

16

LinkedLists stored in each external list)
2. Random seed : a seed for the random number generator in Java. Including

control of this parameter allows for consistency across runs of the program. I
used 255 as my random seed for each generation.

3. Random range: the range of random numbers generated to populate the
trees. Within a nest, each tree contains the same values (i.e. L1[x] contains the
same values, in the same order, as L1[y]). The two aspects of random range
that I examined were bandwidth and location. Because each component has a
fixed structure, varying the values contained inside of them provides the timbral
variation of the audification. I chose to use random numbers instead of numbers
with some sort of pattern in order to maintain the spirit of glitch: randomness
correlates with noisiness and makes the audification more dynamic.

a. Bandwidth: How wide the random range is (RAND HIGH - RAND LOW =
bandwidth). I fixed bandwidth to three possible values: wide=10,000, mid=5000,
narrow=1000). Because each tree contains shorts, which can have values from
−215 to 215 − 1, these bandwidth values allow varying degrees of randomness
while maintaining ranges with values all below zero, with a zero crossing, and
all above zero.

b. Location: Where the random values fall. Low: [RAND LOW = −215,
RAND HIGH = −215 + 1 + bandwidth], Mid: [RAND LOW = 0 − (bandwidth/2),
RAND HIGH = 0 + (bandwidth/2)], High = [RAND LOW = 215 − bandwidth − 2,
RAND HIGH = 215 − 2]. For the upper and lower extremes (RAND LOW for low
range and RAND HIGH for high range), I moved the limits towards zero by a value
of 1 to avoid aliasing issues when rendering the audification. When an audio
file experiences values at the extremes of the 16-bit range, frequency artifacts
can appear and obfuscate the results of FFT analysis.

With each set of parameters, I decided on three fixed values to limit the num-
ber of files examined. Audifications with fifty trees will not differ greatly from
audifications with fifty-one trees, therefore using 50 as a generalized “medium”
size will capture the effect of size on the resulting file. I applied this rationale to
the random parameters as well. Using these variable sets, I generated a file for
each permutation of parameters, totalling in 72 total files (see Results section
for full chart).

Taking these files, I created audifications of each with the program SoX, an
audio editing software executed via the command line. I then listened to each
audification to observe general “musical” characteristics of each (such as rhythm
and similarity to other audifications). I then performed FFT analysis using
Amadeus to examine how these characteristics corresponded to the structure
and composition of the files. With each FFT analysis, I used a 4096 bin size in
order to have precision in the frequency-domain values.

4 RESULTS

The audifications produced by each test file can be separated into two groups:
1) files that demonstrated a rhythmic oscillation between a steady tone and

17

noisier material [Group I], and 2) files that manifested as noise with no clear
rhythm [Group II] (Figure 14).

These two groups derive from each file’s structuring parameters. The musical
characteristics each audification exhibited showed a strong causal relationship
with each parameter tested. The effect of a nest’s container sizes and the nature
of its content (the band of random shorts in each tree and its width) was easy
to observe and control. Overall, musical characteristics, such as rhythm, fre-
quency, and timbre, were clearly affected by changes in these basic parameters.
These changes can be traced to the binary representation of each nest and how
structural aspects of the file changed with each parameter. Within the results
sections for each parameter, I will discuss first how the values of the param-
eter affected the musical characteristics of each audification and then explain
how JavaSerial’s specifications and the byte content of the nests caused these
characteristics to manifest.

4.1 EFFECT OF CONTAINER SIZE ON AUDIFICA-
TION

Container size affected the frequency, rate of rhythmic oscillation, and length of
each file’s audification. Each of these characteristics can be linked explicitly to
the size parameters of one or two of the nest’s containers (Figure 15).

Samples in subgroup A acted as the control group for container size, where
all container sizes were set to 50 iterations. The values for l2 size (the number
of iterations of the outer list) were changed to 20 and 100 for subgroups B and
C, respectively. The values for l1 size (the number of iterations of the internal
list) were changed to 20 and 100 for subgroups D and E, respectively. The values
for t size (the number of iterations of the tree within the internal list) were
changed to 20 and 100 for subgroups F and G, respectively. When comparing
samples to determine the effect of container size on the audification, files where
only the size changed (i.e. samples [00], [10], and [20]) were compared, as well
as samples within a subgroup where a container’s size remained constant (i.e.
samples [10], [11], and [12]). The size of the outer list (l2 size) affected the
audification the least. The only difference between samples where l2 size was
changed (files in subgroups A, B and C) was the length of the audification
(Figure 16).

Unsurprisingly, the larger l2 size was, the longer the resulting audification.
Likewise, the shorter l2 size, the shorter the audification. The durations of
samples within a group with the same container sizes was more or less consis-
tent, with durations only varying by a second or so. This can be attributed
to changes in the content of the nest. Durations across groups with the same
l2 size varied widely, but this difference can be attributed to the change in
value for other container sizes, which also affected the size of the test files (hav-
ing only 20 iterations of a tree per internal list instead of 50 obviously results
in a smaller file). The value of l2 size did not affect any other sonic qualities
of the audification other than duration.

18

Figure 14: Chart of audification test files

19

Figure 15: Effect of container sizes on musical parameters

Figure 16: Spectrums and durations for samples [00] (left) and [10] (right)

The value of l1 size affected the rate of rhythmic oscillation in file Group I
(the files that demonstrated a clear rhythm). Group II files (the files that mani-
fested as noise) presented a special case resulting from the values of the random
shorts inside the trees, and will be discussed later on. The value of l1 size

did not affect Group II files (there was no sonic change between subgroups A,
D, and E with Group II files). Within Group I, a smaller l1 size resulted in
faster rhythmic oscillations, whereas a larger l1 size corresponded to slower
oscillations. When comparing samples where only the l1 size parameter dif-
fered (i.e. between samples [00] and [30]), only the rate of oscillation changed
(Figures 17, 18).

Changing the values of t size affected both the underlying pitch and the
rate of oscillation in each file’s audification. When t size was smaller, the
underlying pitch was higher than the default parameter values and the rate of
oscillation faster. Likewise, a larger value for t size resulted in a lower pitch
and a slower rate (Figures 19, 20).

Files within the same subgroup demonstrated the same pitch and the same
rate of oscillation, and files where only the value for t size changed exhibited
the above changes in rate and frequency.

20

Figure 17: Spectrums for samples [00] (left) and [30] (right)

Figure 18: Waveforms for samples [00] (top) and [30] (bottom)

Figure 19: Spectrums for samples [00] (left) and [50] (right)

21

Figure 20: Waveforms for samples [00] (top) and [50] (bottom)

4.1.1 FILE STRUCTURE AND AUDIFICATION

When writing its output to disk, the JavaSerial library utilizes the following
constants to denote terminal and constant values in a stream (Figure 20) [8].

With regards to container size, the value of interest from the above list is the
TC ENDBLOCKDATA [0x78] byte. This value appears at the end of each container
iteration: it marks the end of each tree and each internal list instance. With the
trees, this value has the same effect as the newline character in .txt files and the
double word in .bmp files discussed in the introduction. It acts as a delineator,
making the tree’s byte representation a repeating sequence that manifests as
tone in the audifications. Because each tree iteration is identical, this tone
remains constant throughout each audification. For example, the length of one
tree in sample [00] is 987 bytes. Using this value for the sequence length in
the bit-length to frequency conversion equation discussed in the introduction
produces a value of 89.36 Hz. This value corresponds with the fundamental
frequency returned by FFT analysis on the audification (Figure 22).

The rhythmic oscillation present in the Group I files results from the
TC ENDBLOCKDATA byte marking the end of an internal list instance. This value
is one byte, thus its appearance offsets the following data by a byte. Because the
audio file utilizes a signed 16-bit bit-depth, a change in offset forces a change
in each audio sample’s value from iteration to iteration. Thus, one iteration
of an internal list will manifest as tone, and the next as noise: shifting the
offset by one byte makes many more zero-crossings happen in the audification’s
waveform, and results in a noisier sound [2]. Each iteration of an internal list
is too long to manifest as a tone (as discussed in the introduction, the resulting

22

Figure 21: List of constant and terminal symbols in the JavaSerial library

Figure 22: Spectrum for sample [00]

23

Figure 23: Waveform for sample [01], a Group II file with no distinguishable
rhythm

frequency is too low), thus this repeating sequence appears as a rhythm in
each audification. This is also why t size affects the rate of oscillation in an
audification: changing the size of the trees also changes the size of the internal
list, thus changing the rhythm. Furthermore, changing the size of the internal
list does not change the frequency of the tone present because the sequence is
too large.

Overall, the value chosen for the container size parameter has a direct, con-
trollable effect on the audifications produced by each file.

4.2 EFFECT OF RANGE ON AUDIFICATION

The three possible values for the range parameter of each file were low (all short
values in the trees below zero), mid (values above and below zero), and high

(all values above zero). This parameter’s effect manifested as changes in timbre
from file to file. It is also what caused the difference between files in Group I and
Group II: whenever this parameter was set to mid, the audification presented
as a noisy file, with no distinguishable rhythm (Figure 22).

This trend was consistent across file subgroups: within each subgroup, sam-
ples [x1], [x4], and [x7] (the files with the range parameter set to mid) were
always Group II files.

The difference between files where range was set to low and range was set to
high was slightly more nuanced. Within a subgroup, these files generated the
same fundamental frequencies (had the same perceived pitch), but had slightly
different timbres. Files with a low range parameter had stronger low frequency
information, whereas files with a high range parameter had stronger high fre-
quency information. This comparison was made between files in the same sub-
group, where only the range parameter differed (Figure 23).

This correlation can be linked again to the binary representation of a nest.
Each tree contained a series of random shorts. Because the tree representa-
tion acted as the repeating byte sequence that determined pitch, changes in
its content without changes in its length results in a change in timbre: the
waveform maintains the same period (and thus the same frequency), but its

24

Figure 24: Spectrums for samples [00] (left) and [02] (right)

Figure 25: Portion of waveform for sample [00]

shape changes. The behavior of the timbral changes can be linked to the char-
acter of the random shorts. When the random range was set to low, each
repeating sequence contained audio sample values above and below zero: the
constant/terminal symbols used by JavaSerial provided the values above zero,
and the random shorts provided values below (Figure 24). This created a bal-
anced waveform with a clearly defined period, resulting in stronger amplitude
values in the lower partials.

When the random range was set to high, all audio sample values were above
zero (Figure 25). While the period of the wave was still clearly delineated (and
thus the fundamental still perceptible), the unbalanced waveform resulted in
higher amplitude values for the higher partials.

As previously discussed, when the random range was set to mid, each audifi-
cation manifested as noise, without the clear rhythmic oscillation present in the
other files. This is because the random shorts generated had values above and
below zero: as a result, the higher magnitude bits in the binary representation of
each short changed frequently. When converted into an audio waveform, this re-
sulted in frequent zero-crossings, which obfuscated the repeating byte sequences
created by the file’s structure. Without these clearly delineated sequences, the
rhythm and pitch present in the other files disappeared.

25

Figure 26: Portion of waveform for sample [02]

Figure 27: Spectrums for samples [00] (left) and [03] (right)

Again, changes in the random range parameter produced concrete, control-
lable changes in the musical characteristics of the audification. This is directly
linked to the structure of the binary representation of each file.

4.3 EFFECT OF BANDWIDTH ON AUDIFICATION

The final parameter that I examined in this experiment was the width of the
range of the random shorts (or bandwidth), with the possible values of narrow,
mid, and wide. This parameter had the least effect on the audifications: chang-
ing it really only affected files in Group II. Changes of this value did not result
in any change in Group I files, as confirmed by spectral analysis (Figure 26).

With Group II files, changes in bandwidth resulted in changes in the noisiness
of a file. Files with a wider bandwidth had slightly more defined frequencies
(Figure 27).

This, again, can be linked to the behavior of the random shorts. With
a higher bandwidth (larger random range), the probability of a zero-crossing
occuring decreases. Fewer zero-crossings result in less noise in the file.

While slight, changes in this parameter again resulted in clear changes in
the audio.

26

Figure 28: Spectrums for samples [01] (left) and [04] (right)

4.4 SUMMARY

Changes in container size resulted in changes in frequency, rate of rhythmic
oscillation, and duration of audification. These changes can be linked to the
binary representation of each file and the constants used by the JavaSerial li-
brary. Changes in the range of the random shorts stored inside each tree resulted
in changes in the audification’s timbre. When this parameter was set to mid,
the file manifested as noise, with no rhythmic oscillation and a less-defined fre-
quency. The bandwidth parameter only affected the Group II files: a wider
bandwidth created less noisy files within this group. Overall, changes in each
parameter resulted in clear, easily controllable changes in the audifications.

5 DISCUSSION AND CONCLUSION

As hypothesized, these results demonstrate that a generative process offers com-
posers informed control over audification techniques. Each parameter tested
caused explicit changes in the resulting audio file. However, this experiment
tested a very small subset of variables in a highly controlled setting. Many
more combinations and types of parameters remain to be tested, leaving an
open field for future work on generative audification processes. Ideas for expan-
sion in this area are as follows:

–Utilizing different data types within a nest: This experiment only tested
nests containing random shorts. Future tests could easily examine the effects of
utilizing other basic types, such as floats, integers, booleans or chars.

–Nests with different types of containers: This work examined a nest con-
structed from trees within a list within a list. These data structures could
be swapped out for other types, such as hashmaps, to construct new types of
nests. The binary representations of these data structures would be different,
and would result in different types of audifications. However, I suspect that pa-
rameters such as container size would have similar effects on the audifications.

–Nests with more complexity: The nest used for this analysis had 3 layers.
One could easily construct a nest with several more layers (5+) that could create

27

more musically complex audifications.
–Different programming languages: JavaSerial has a highly regulated specifi-

cation for writing streams to disk, which is why the discussed files manifested in
the way that they did. Other languages (C, Python) have ways of writing data
structures to binary files that most likely use different specifications. Changes
in specifications would result in changes in the file structure, thus producing
different audifications.

While much work remains to be done with determining the scope of a gener-
ative audification process, this work demonstrates that such a process is viable
in terms of giving composers concrete control over this technique. Furthermore,
it proves that this method opens up a new arena in DSP research: manipulat-
ing binary structures to create sound can offer a wide array of sonic possibilities
that can be controlled by composers. The sonic palette of this technique dif-
fers from all existing DSP techniques and is under-explored and researched.
With any luck, this paper will motivate researchers to explore new methods of
sound creation instead of redesigning existing algorithms that produce overused
sounds.

6 Acknowledgments

This work was supervised by Roberto Hoyle as an honors thesis for the Oberlin
Computer Science Department. I would also like to thank Thom Johansen
(NoTAM) and Mikhail Malt (IRCAM) for their assistance with coding and
implementation.

References

[1] Michael Scott Barren. Is the Image Hidden in Aphex Twin’s “Equation”
the Best Easter Egg in Electronic Music? Vice, 24(4), 2016.

[2] Paul Berg, Robert Rowe, and David Theriault. Ssp and sound description.
Computer Music Journal, 4(1):25–35, 1980.

[3] Richard Boulanger and Victor Lazzarini. The Audio Programming Book.
MIT Press, Cambridge, Massachusets, USA, first edition, 2011.

[4] Kim Cascone. The Aesthetics of Failure: “Post Digital” Tendencies in
Contemporary Computer Music. Computer Music Journal, 24(4):12–18,
2000.

[5] Florian Dombois and Gerhard Eckel. The Sonification Handbook, chapter
Audification, pages 301–324. Logos Publishing House, Berlin, Germany,
2011.

28

[6] Matt Donadio. How to Generate White Gaussian Noise. Available
at http://dspguru.com/dsp/howtos/how-to-generate-white-gaussian-
noise/http://dspguru.com/dsp/howtos/how-to-generate-white-gaussian-
noise/, accessed March 13, 2017.

[7] Thom Holmes. Electronic and Experimental Music: Technology, Music,
and Culture. Routledge, New York, 2016.

[8] Java Object Serialization Specification, accessed February 15, 2018. Avail-
able at https://docs.oracle.com/javase/7/docs/platform/serialization/
spec/protocol.html.

[9] Thomas Knoll. Adobe Photoshop File Formats Specification. Avail-
able at https://www.adobe.com/devnet-apps/photoshop/fileformatashtml
/#50577409 13084, accessed March 13, 2017.

[10] Look (Venetian Snares) Easter Egg - Look at Vene-
tian’s Cats, accessed September 30, 2017. Available at
http://www.eeggs.com/items/46956.html.

[11] Curtis Roads. The Computer Music Tutorial. MIT press, 1996.

[12] Craig Stuart Sapp. WAVE PCM soundfile format. Available
at http://soundfile.sapp.org/doc/WaveFormat/http://soundfile.sapp.org/
doc/WaveFormat, accessed March 13, 2017.

[13] M. Serra. Stochastic Composition and Stochastic Timbre: GENDY3 by
Iannis Xenakis. Perspectives of New Music, 31(1):236–57, 1993.

[14] Simplified Windows BMP Bitmap File Format Specification, ac-
cessed March 13, 2017. Available at http://www.dragonwins.com
/domains/getteched/bmp/bmpfileformat.htm.

[15] Spectrograms of “3recurring”, accessed September 30, 2017. Available at
https://forum.watmm.com/topic/63401-spectrograms-of-3recurring/.

[16] ESynth DIY : Software for Generating ADSR Envelopes, accessed April 20,
2018. Available at http://hackmeopen.com/2011/12/synth-diy-software-
for-generating-adsr-envelopes/.

[17] Barry Truax. Real-time granular synthesis with a digital signal processor.
Computer Music Journal, 12(2):14–26, 1988.

29

	Generative Processes for Audification
	Repository Citation

	tmp.1589819349.pdf.DjfeJ

