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I BRIDGER FORMATION SANDSTONES USED AS AN 

INDICATION OF TECTONICS IN THE GREEN RIVER BASIN 

AND WESTERN WYOMING 
Lisa S. Novins 

Abstract 
Sandstone from the Eocene Bridger Formation of southwestern Wyoming can be used as 
a tool to constrain the timing and order of controversial tectonic events in the region. The 
key tectonic element in this region is the Wind River Range. Sandstones in the Bridger 
were derived from two source areas to the north, one being the basement rocks from the 
Wind River Range and the other volcanic rocks from the Absaroka Volcanic field (A VF). 
The abundance of volcanic grains increases upsection in the Bridger indicating that more 
volcanic material was carried through the Wind River Range. This evidence supports the 
theory that the southern Wind River Range was initially uplifted during the Laramide 
Orogeny, eroded throughout the Eocene, and uplifted during a second event in the 
Oligocene. This theory contrasts the traditionally accepted tectonic history of the Wind 
River Range which says the last uplift was during the Eocene Laramide Orogeny. The 
base of the Bridger has been dated at between 51 and 48 Ma (Groll and Steidtmann, 1987; 
Clyde et aI, 1997). The Bridger at Continental Peak in the northeastern Green River basin 
contains volcanic quartz which is believed to be from the A VF and constrains the timing 
of Bridger deposition. 

Introduction 

The Bridger Formation is significant to geologists and paleontologists for a 

number of reasons. One is that its sedimentology can be used to understand the 

complicated structural evolution of the southwestern Wyoming region. Bridger 

sediments are derived from two sources, an Eocene volcanic source in the Absaroka 

Volcanic field (A VF) and an Archean basement source in the Wind River Range. The 

proportion of sediment derived from these two groups changed during deposition of the 

Bridger, and these changes must reflect shifts in tectonics and/or volcanism in the source 

areas. The most important question it can be used to address is the Eocene rise and fall of 

the Wind River Range. 



Another point of interest is the rich vertebrate fauna the Bridger contains. The 

Green River Basin and the formations within it, including the Bridger, were deposited in 

a brief period of time when archaic and modem orders of mammals coexisted (Trapini, 

1998). Sequences of evolutionary stages in mammalian faunas defined by index fossils , 

first and last occurrences of species, characteristic fossils and typical correlative areas 

(Prothero, 1996) have been used to define North American Land Mammal Ages 

(NALMA) (Fig. 1). Any improvement in understanding the depositional conditions of 

the Bridger Formation is helpful in understanding the environment in which these 

mammals lived. The work presented here is part of a broader investigation aimed at 

learning more about the depositional environment and physical stratigraphy in the eastern 

part of the greater Green River basin. 

Background 

Geographical Extent 

The middle Eocene Bridger Formation is found primarily in the greater Green 

River basin of southwestern Wyoming. The ba'sin is surrounded by modem topographic 

highs including the Uinta Range to the south and the Wind River Range to the north (Fig. 

2 and Fig. 3a). The Wind River Range stretches approximately 100 miles through central 

western Wyoming. The A VF is north of the Wind River Range in the Yellowstone 

National Park region of northwestern Wyoming and southwestern Montana. The field 

ranges approximately 150 miles from north of Yellowstone in MT to the northern Wind 

River basin (Fig. 2). The southern Absarokas lie about 75 miles from the northeastern 

Green River Basin which is not significantly different than during the Eocene. 
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Geologic Setting 

The Green River basin is one of many basins formed as a result of Laramide 

deformation during the late Cretaceous and early Tertiary. The Laramide event probably 

ranged from 70-45 Ma with the most intense deformation between 65-50 Ma (Dickinson 

and Snyder, 1978), but there is still considerable debate as to the precise timing, 

particularly in Wyoming. For example, Lillegraven (1993) shows evidence that the 

Laramide Orogeny ended by 57 Ma and others believe it may have begun as early as 90+ 

Ma (Steidtmann and Middleton, 1991). The Wyoming basins formed by the Laramide 

consist of an extremely rich sedimentary record representing all Tertiary epochs and have 

one of the best preserved sections of nonmarine Eocene strata in the world. 

The Green River basin was formed as a flexural response to uplift of the Wind 

River block during the Laramide Orogeny (Steidtmann et al, 1989). The basin was an 

ideal setting for high sedimentation rates because it was a topographical low surrounded 

by source areas that were rapidly producing sediment during the Eocene. The Green River 

basin contains the most complete section of Eocene sedimentary rocks in Wyoming 

(Roehlar, 1992a). The Bridger Formation is one of these units, and it generally lies 

stratigraphically above the Green River Formation. The contact between the Green River 

and Bridger Formations is gradational and probably time transgressive, as the two 

formations interfinger in many places. As a result of this complex interfingering, the base 

of the Bridger has been defined differently at different sites. Historically, workers have 

chosen a distinct marker in their field area at or near a change from light gray calcareous 

shale typical of the Green River Formation to green and brown shales and sandstones 

typical of the Bridger Formation. In contrast, the top of the Bridger is easy to pinpoint; it 
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is either erosionally truncated by the modem land surface or disconformably overlain by 

Oligocene sediments of the Bishop Conglomerate. 

Most previous studies in the Bridger Formation have focused on paleontology 

rather than geology (Keonig, 1960; Wood, 1966; Gunnell and Bartels, 1994), so most 

descriptions of the strata themselves focus on the physical stratigraphy and/or present 

generalized interpretations of depositional environment. These studies show a high 

degree of lateral variability in the Bridger (Table 1) because the formation was deposited 

during a transition from a lacustrine to fluvial environment (Wood, 1966; Groll, 1986). 

The Bridger is a dominantly clastic unit composed of sand sized volcanic and basement 

detritus, shale and limestone. Paleocurrent measurements indicate the sediment source 

lay to the north (Fig. 4) (Wood, 1966; Groll, 1986; Groll and Steidtmann, 1987). 

The Wind River Range is the closer of the two potential sediment sources. It is 

one of several ranges composed of uplifted basement rock in Wyoming. Paleocurrent 

measurements indicate that sediment came from the north through the Wind River Range, 

which suggests that the range is the source of Bridger basement derived grains. The 

Wind River Range is composed of tectonically uplifted Archean granitic basement rocks 

(Mtira, 1993). Controversy surrounds the timing of uplift of the Wind River Range, there 

being two main proposals. The traditional view is that the last deformation/uplift episode 

was the Laramide Orogeny, which had ceased by about 50 Ma and was responsible for 

modem relief (Y onkee and Mitra, 1993). Recently other workers have argued that there 

was uplift subsequent to the Laramide. The second interpretation includes two additional 

events subsequent to the Laramide that the traditional view does not include. One is that 

the southern toe of the range was rapidly eroded during the Eocene, leaving little or no 
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relief. The other additional event is that the southern part of the range was uplifted during 

an Oligocene faulting event along reactivated Precambrian shear zones between 30 and 

23 Ma (Groll, 1986; Steidtmann et aI, 1989; Steidtmann and Middleton, 1991; Cerveny 

and Steidtmann, 1993). 

The only known source for the abundant volcanic detritus in the Bridger is the 

AVF (Groll, 1986; Steidtmann and Middleton, 1991). In contrast to the Wind River 

Range, the A VF consists of a suite of un deformed extrusive and intrusive rocks formed 

during the early Tertiary. The extrusive rocks of the A VF are known as the Absaroka 

Volcanic Supergroup (A VS) (Smedes and Prostka, 1972). Absaroka volcanism began 

about 50 Ma (early Eocene) and ended about 38 Ma (late Eocene) (Sundell, 1993) and 

increased progressively in volume from the middle to late Eocene (Love, 1960). 

The A VS consists mainly of andesitic lava flows, although basalts 

trachyandesites, dacites and rhyolites are locally important (Sundell, 1993; Smedes & 

Prostka, 1972; Parsons, 1974; Love 1960). They were extruded via a wide variety of 

extrusion styles and include flow breccias, autobrecciated andesitic flows, Vulcanian 

breccias, pyroclastic flow breccias, explosion and intrusive breccias and laharic breccias. 

Petrologic data have been gathered on only a small fraction of the rocks in the range, 

mainly those that are rich in minerals or have easy access (Sundell, 1993). 

Volcanic quartz crystals are present in the Bridger Formation and quartz 

phenocrysts have only been reported in two units in the entire AVS. One is the Slough 

Creek Tuff which is coeval with the Wapiti and a member of the Mount Wallace 

Formation. This quartz latitic ash flow tuff contains phenocrysts of plagioclase, sanidine, 

hornblende, biotite, hypersthene, and augite (Hickenlooper and Gutmann, 1982) and is 
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found in the north central part of the A VF. The other unit that may contain quartz 

phenocrysts is the Sepulcher Formation, which is located in the northwestern part of the 

A VF. The Sepulcher Formation is a dominantly andesitic unit, which contains some 

sections of dacitic alluvial facies. While quartz is not explicitly mentioned in reports on 

the Sepulcher, it is identified as the source of detritally reworked volcanic quartz crystals 

in the Pitchfork Formation which is coeval with the Wapiti (Hay, 1960; Smedes and 

Prostka, 1972). 

Geologic Age 

Radiometric dates and faunal remains indicate deposition of the Green River 

Formation began roughly 52 Ma and ended around 50 Ma in the northeastern part of the 

Green River basin (Lillegraven, 1993). Due to the variable nature of the base and top of 

the Green River Formation deposition may have lasted several million years longer in 

adjacent basins where it was also deposited (Remy, 1992). Based on 

magnetostratigraphic work by Clyde et al (1997) from the western Green River basin the 

dates of deposition of the Green River Formation may be 1.5 Ma younger than previously 

thought. The source of uncertainty in the dates reflects uncertainty in the correlation with 

magnetic reversal time scales. Based on the older set of Green River Formation dates, the 

start of Bridger deposition in the northeastern Green River basin is estimated at 50 Ma 

with deposition lasting at least 2 Ma (Lillegraven, 1993; Groll and Steidtmann, 1987). 

Given the variable nature of the contact between the Bridger and Green River Formations, 

the deposition of the Bridger could have commenced as much as a million years earlier or 

later in other parts of the Green River basin. 
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The Bridger Formation at Continental Peak 

Our study of the Bridger Formation was conducted in and around Continental 

Peak in the northeastern greater Green River basin (Fig. 3). Continental Peak is an 8,400 

foot mountain located near the southeast flank of the Wind River Range amidst dry, non­

vegetated badlands. In this area, the Bridger consists of shale, sandstone, limestone and 

mudstone. It is well exposed from its disconformable upper contact with the Oligocene 

Bishop Conglomerate down to an ill-defined lower contact with the Green River 

Formation, the later being well exposed in the area. For the base of the Bridger, we chose 

the top of a laterally extensive oolitic limestone containing stromatolites that capped a 

thick sequence of typical gray Green River shales. Shales above the limestone were 

brown to gray-green and, unlike those beneath it, contained interbeds of sandstone and 

limestone. 

During the summer of 1998 we measured three sections totaling approximately 

520 meters in the Bridger formation on the southeast, north and northwest sides of 

Continental Peak (Fig. 3b). We informally divided the Bridger into "lower" and "upper" 

units in our sections but our subdivision does not necessarily correlate to previously 

described "upper" or "lower" units in the Bridger Formation (e.g. Matthew, 1909). The 

entire Bridger is exposed at the northwest site, but only the "lower" Bridger is exposed at 

the other two sites. At the southeast and north sites the "lower" Bridger is about 120 and 

110 meters thick, respectively (Fig. 5). At the northwest site the entire Bridger Formation 

is exposed and is 215 meters thick, 120 meters of which is "lower" Bridger Formation. 

The "upper" Bridger consists of sandstone except for a total of about 1-2 meters of 

mudstone. The "lower" Bridger is dominantly brown to gray-green shale with 
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interbedded mudstone, limestone, and sandstone. Shale is distinguished from mudstone 

by its fissile texture. There are eight sandstone beds at the southeast site ranging from 

one to five meters thick. The thickness of sandstone beds increases drastically at the top 

of the "lower" Bridger. The contact between the ""lower" and "upper" Bridger is very 

abrupt. The sandstone of the "upper" Bridger weathers red in contrast to the tan/brown 

weathering of the "lower" Bridger sandstones. Bridger siliciclastic sands are well sorted 

and average medium grain size. Limestones range from micrites to oosparites. 

Our sections of Bridger Formation in the Continental Peak area contain the same 

sorts of sediments that have been described in earlier published works (Table 1), the lack 

of conglomerates being the main difference. We interpret the shale dominated "lower" 

Bridger as being deposited in a mixed fluvial lacustrine to fluvio-delatic environment 

whereas the sandstones of the "upper" Bridger appear to be entirely fluvial in origin. The 

unit we informally called the "donut" sandstone appears to mark this transition (Fig. 5) 

Methods of Study 

At the southeast site, only the "lower" Bridger was present and it contained eight 

discrete beds of sandstone. I collected one or two samples from each of the beds (Fig. 5). 

If a bed looked homogenous, I only took one sample, but if I noted a vertical change in 

lithology within an individual bed, I took two samples, one from the bottom and one from 

the top of the bed. At the northwest site the "lower" Bridger contains 13 beds of 

sandstone and I collected samples from three of the uppermost four beds (Fig. 5). I also 

collected four samples from the "upper" Bridger. The "lower" Bridger is also present at 

the north site but no samples were taken from there. A unique layer we informally called 

the "donut sandstone" was used to correlate between the southeast and northwest sites. 
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Thin sections were made from all sandstone samples, except for two samples from 

the "upper" Bridger which proved two fine grained and too matrix rich. I measured the 

relative abundance's of different types of sand grains by counting 500 points on each thin 

section using a scheme with eight categories (Table 2 and Table 3). Volcanic lithics were 

the most abundant type of grain and I subdivided them into four categories (Table 4) 

based on the presence of phenocrysts and groundmass textures. Third, I counted volcanic 

and basement derived quartz and feldspar using several criteria (Table 5) to divide grains 

into six categories (Table 2 and Table 6). For a grain to be classified as volcanic or 

basement it had to show at least two of the criteria unless it had two phase fluid 

inclusions or plaid twinning indicating basement derived or had quenched magmatic 

inclusions or was a zoned feldspar indicating volcanic origin. I determined the maximum 

grain size by measuring the maximum axis of the cross sections of the largest grain in 

each of ten fields of view. 

Petrography of Bridger Sandstone 

The constituent grains in all of the Bridger sandstones are in the medium sand 

grade except for one (NW14) which consists of very fine sand (Table 7). The sands are 

well sorted and consist of angular to subangular lithic fragments, quartz and feldspar. 

The volcanic lithics are the most abundant grain type and show a variety of textures rich 

in feldspar throughout the formation. Most commonly, the volcanic lithic grains contain 

feldspar laths. Some volcanic lithic grains also have euhedral, zoned phenocrysts up to 

about 0.1 mm long while others contain fragments of even larger feldspar phenocrysts. 

The feldspar phenocrysts in the volcanic lithic fragments are primarily plagioclase. The 

basement feldspar grains are primarily rnicrocline. Monocrystalline quartz exhibits a 
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wide range of extinction patterns from straight to undulose and many contain either two 

phase fluid inclusions or quenched magmatic inclusions. The sandstones contain variable 

proportions heavy minerals, primarily hornblende, throughout the formation, as well as 

other miscellaneous clast types but no evidence of any volcanic glass shards. 

All of the samples of Bridger sandstones contain calcite cement except for two 

samples from one bed where the cement is chalcedonic (Fig. 6). Whether calcite or 

chalcedony, cement is fairly abundant averaging 23% by volume in all the samples 

counted. Only three samples had less than 20% cement and the maximum abundance 

observed was 29 percent by volume. There are not signs of any other significant 

diagenetic alteration in any of the samples. In fact, hornblende and other easily altered 

grains are extremely fresh and highly unmodified. 

Stratigraphic Trends 

There is little variation in the relative abundance of quartz, feldspar, and lithic 

grains as a function of stratigraphic position, although feldspar grains did decrease a few 

percent upsection (Fig. 7). However, there are significant changes upsection in the kind 

of quartz, the kind of feldspar (volcanic vs. basement derived), the types of lithics, and 

the composition of clasts in the miscellaneous category. One of the "upper" Bridger 

samples had over two to three times as much hornblende as the average of the "lower" 

Bridger sediments. 

The abundance of volcanic lithics increases upsection in the proportion of total 

lithic grains. This increase is accompanied by a corresponding decrease in the abundance 

of lithic fragments from the intermediate basement source (Fig. 7c and Fig. 8). There was 

also an increase upsection in volcanic lithics with quartz phenocrysts (Fig. 9). No 
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systematic variation in the relative abundance of volcanic lithics with laths or volcanic 

lithics with feldspar phenocrysts (including the zoned and euhedral categories) as a 

function of statigraphic position was observed. The relative abundance of volcanic 

detritus also rises upsection relative to basement derived crystals (Fig. 10). 

Interpretations and Implications 

To verify the assumption that the A VF was the source of volcanic detritus in the 

Bridger, I obtained 13 thin sections from samples of the Wapiti Formation, one of the 

thickest, most widespread units in the A VF. The Wapiti is a heterogeneous formation 

consisting of andesitic lava flows rich in hornblende and biotite, crosscut by numerous 

dikes and sills (Smedes and Prostka, 1972; Bartels, 1999). Both the groundmass textures 

and phenocrysts in these thin sections are strikingly similar to those of the volcanic lithics 

in the Bridger sandstones, only two of the five classifications of volcanic lithic texture 

fragments were not represented by Wapiti samples. These two categories make up less 

than 20% of the total lithic fragments in the Bridger. The two groups of lithics not 

represented by the Wapiti include quartz phenocrysts which probably do not come from 

andesitic beds but may have come from other sources in the A VF. 

As noted above, two possible sources for detrital volcanic quartz have been 

reported from the A VF, namely the dacitic beds of the Sepulcher Formation and the 

Slough Creek Tuff. The Slough Creek has been tentatively dated at 48.0±1.3 Ma and is 

definitely older than a 47.7±1.5 Ma intrusive. The Sepulcher Formation is 49.2±1.5 Ma. 

Provided the volcanic quartz in the Bridger was derived from these units, the question 

arises as to why no other detritus from these units, such as glass shards or pumice 

fragments, has been identified in the Bridger. Davies et al (1978) documented that glass 
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shards may disappear altogether or decrease drastically in abundance downstream in the 

sand size fraction relative to quartz and feldspar grains in a distance less than or equal to 

the inferred distance of travel from the A VF to the Green River basin. 

Since the Bridger volcanic detritus is extremely fresh and shows little or no sign 

of weathering, it must have been quickly fragmented and eroded without being 

significantly altered chemically in a hot and wet climate. Phreatomagmatic eruptions may 

be an explanation for how this occurred. These explosive eruptions occur when there is 

an interaction between external water and magma, which causes fragmentation in existing 

rocks and as well as juvenile fragments. The climate was appropriate for 

hydrovolcanism, fossil flora and fauna indicate an average of 60 inches of rain per year 

(Parsons, 1965). 

My studies in the Bridger Formation indicate a systematic upsection increase in 

the proportion of volcanic quartz, feldspar and lithic fragments and an associated decrease 

in basement derived quartz, feldspar and lithic fragments through 220 meters of 

stratigraphic section. The consistent grain size through the section shows that this change 

is not caused by differential changes in environmental energy. All of the samples are well 

sorted and all but one consists of medium sand. The excellent state of preservation of 

such easily weathered minerals such as hornblende indicates there has been little post­

depositional alteration. This is in keeping with the abundance of cement, which indicates 

these sands were cemented early in diagenesis, which would help protect them from 

subsequent alteration. Given the apparent lack of selective dissolution of sand grains 

during diagenesis and the constant grain size, there must be another explanation for the 

upsection change in sandstone composition; it must be controlled by provenance. 
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The first order provenance controls on the composition of nonmarine clastic sands 

are climate, volcanism and regional tectonics. Although the regional climate became 

cooler and drier during the Eocene (Roehlar, 1993), this change in climate was probably 

not responsible for the observed changes in sandstone composition for two reasons. One 

is the lack of notable changes in weathering upsection; all the sand grains in the Bridger 

are very fresh and unaltered. The other is that one would expect the relative abundance of 

basement derived feldspars to increase as easily as the volcanic lithics if the climate 

became drier since they too, are easily weathered. The opposite is true there are fewer 

basement derived feldspars upsection in the Bridger. Therefore, I believe the climate 

change could not have been responsible for the changing composition of Bridger 

sandstones. 

Changes in volcanism are also not responsible for changes in Bridger sandstone 

composition. The absence of evidence of glass shards in Bridger sandstones shows that 

the sand was not directly deposited by a pyroclastic eruption. Although volcanism in the 

A VF increased through the middle to late Eocene (Love, 1960) this increase in not 

necessarily represented by the Bridger Formation. Moreover, an increase in andesitic 

volcanism in the source area would not account for the increase in the relative abundance 

of volcanic quartz. 

This leaves shifts in tectonic activity as the best explanation for changes in 

composition of Bridger sandstones. Bridger sandstones were deposited in a fluvio-deltaic 

to fluvial environment that originated to the north, through the modem Wind River 

Range. For a river to carry such a high proportion of volcanic material relative to 

basement material through the range, the relief must have been low. If relief of the range 
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were decreasing during deposition of the Bridger Formation, this would mean less 

basement-derived sediment was available for transport into the Green River basin. This 

would also lead to a progressively greater percentage of volcanic sediment from the A VF 

to be carried to the greater Green River basin through the Wind River Range. 

Conclusions 

A detailed study of the composition of sand grains in the sandstones of the 

Bridger Formation has lead to two conclusions about the history of southwestern 

Wyoming. One is that lowest sandstone in the Bridger Formation cannot be older than 

the oldest source of volcanic quartz in the A VF', which may be the Sepulcher Formation. 

Two is that the southern toe of the Wind River Range must have been uplifted subsequent 

to the Eocene because it was probably not a major topographical high during deposition 

of the Eocene Bridger Formation. 

For reasons explained above, the most likely source of volcanic quartz in the 

Bridger Formation is the Slough Creek Tuff or the dacitic beds of the Sepulcher 

Formation in the Absaroka Volcanic Supergroup. This information offers constraints on 

the age of the lowest sandstone in the Bridger Formation in the Continental Peak area, it 

cannot be older than 48.0±1.3 Ma if the quartz is from the Slough Creek Tuff. If the 

quartz is from the Sepulcher Formation, the Bridger cannot be older than 49.2±1.5 Ma. 

The variation of sediments in the Bridger Formation contributes new information 

to the debate over the tectonic history of the Wind River Range. Although regional scale 

uplift stopped with the end of the Laramide Orogeny, the Wind River Range must have 

been uplifted again by local faulting after Eocene erosion. The increase in the proportion 

of volcanic relative to basement derived sediments shows that the range was eroding and 
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becoming a less dominant source through Bridger time. The abundance of volcanics 

present in the Bridger Formation shows that the southern Wind River Range was not a 

dominant topographic high throughout the Eocene; the range was disappearing. The 

southern flank of the Wind River Range must have been uplifted to its present height 

after the Eocene, which is consistent with the Steidtmann et al (1989) theory that the 

Range was rejuvenated during the Oligocene. 
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Figure 7a: QFL diagram of the Bridger sandstones. The samples are divided into two groups based on stratigraphic level. 
Group 1 corresponds to the lower part of the Bridger and Group 2 corresponds to the upper part of the Bridger. These 
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Figure 8: Graph showing increase in relative abundance of volcanic lithic fragments upsection in the Bridger. 
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Figure 9: Graph showing the increase in relative abundance of quartz phenocryst bearing volcanic lithic fragments 
upsection. 
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Author Steidtmann & Groll & Steidtmann & Wood, 1966 Koenig, 1960 Nace, 1939 
Middleton, 1991 Steidtmann, 1987 Middleton, 1991 

0 • conglomerate • siltstone, • conglomerate • claystone, • freshwater • sandstones, 
B deposits with sandstone, deposits with siltstone, limestone, siltstones, 
S volcanic and madstone, volcanic and marls tone, and marl, clays, 
E plutonic clasts limestone, plutonic clasts limestone. mudstone, mudstones, 
R claystone. and lacustrine shales and 
V • more • more • not abundant shale and limestones. 
A tuffaceous up • higher tuffaceous up shale sandstone 
T section. proportion of section. • poorly 
I volcanogenic • channel • channel sorted not 
0 • lenses of material in the • lenses of sandstones sandstone highly lithified 
N pebbly upper Bridger pebbly near the middle clastic deposits 
S sandstone and sandstone and • volcanic 

conglomerate • lenses of conglomerate • fine grained material • cross 
with volcanic pebbly with volcanic lacustrine bedded 
and plutonic sandstone and and plutonic sediments near sandstones 
clasts gravel with clasts the bottom & 

volcanic and top • algal beds 
plutonic clasts. and petrified 

wood 
I • initially • fluctuations • sediments 
N fluvio-deltaic in lake level range from 
T environment must have lacustrine to 
E with increasing produced fluvial with 
R fluvial limestone some 
p influence. marker beds lacustrine to 
R • entirely containing fluvial up 
E fluvial upper ostracods and section 
T Bridger algal structures. 
A 
T 
I 
0 
N 
S 

Table 1: Summary of sedIment observatIOn m the Bndger from vanous studIes. 

Main Categories Volcanic Lithic Subdivisions Monocrystalline Q and 

Feldspar Subdivisions 

I) Monocrystalline Quartz (Qm) 1) Lv with F laths I) Volcanic Qm 

2) Polycrystalline Quartz (Qp) 2) F phenocrysts 2) BasementQm 

3) Feldspar (F) 3) Q phenocrysts 3) Ambiguous Qm 

4) Volcanic Lithic (Lv) 4) Q and F phenocrysts 4) VolcanicF 

5) Metamorphic Lithic (Lm) 5) Lv with phenocrysts & lathes 5) BasementF 

6) Sedimentary Lithic (Ls) 6) Miscellaneous 6) Ambiguous F 

7) Miscellaneous (M) 

8) Cement 

Table 2: Pomt count categones for Bndger sandstone grams. 
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Main Categories SE5 SE7 SE10 SE148 SE14T SE18 SE27 SE37 SE38 NW12 NW13 NW14 U81 

Monocrystall ine Ouartz (0) 43 59 54 32 47 85 52 51 90 86 33 128 89 
Polycrystalline Ouartz (Op) 14 20 12 9 19 19 22 21 16 10 4 6 5 
Feldspar (F) 90 86 84 61 54 86 105 36 50 53 42 38 59 
Lv 183 147 156 211 169 143 129 212 177 167 217 183 249 
Metamorphic Lithic (Lm) 20 24 10 35 23 30 23 22 15 18 8 5 9 
Sedimentary Lithic (Ls) 1 2 0 0 2 0 1 4 3 0 0 99 0 
Miscellaneous (M) 28 33 66 21 72 39 33 23 21 19 18 15 47 
Cement (C) 121 129 118 131 114 98 135 131 128 147 178 26 42 

Table 3: Mam categones count data. 

Volcanic Lithics SE5 SE7 SE10 SE14B SE14T SE18 SE27 SE37 SE38 NW12 NW13 NW14 UB1 UB4 
Lv with laths 58 52 65 56 55 64 68 34 62 64 46 59 60 40 
F phenocrysts 12 14 5 8 8 6 10 7 17 8 22 1 16 7 
0 1 0 5 0 0 3 9 6 1 11 6 16 7 5 
O&F 0 0 0 2 2 2 3 0 3 0 3 0 0 0 
Miscellaneous 1 5 7 9 10 6 1 0 6 8 13 2 8 41 

Table 4: Volcamc lIthic count categroles and data. 

Volcanic Quartz Criteria: Volcanic Feldspar Criteria: 
Quenched magmatic inclusions Quenched magmatic inclusions 
Euhedral shapes Oscillatory or growth zoning 
Straight! Parallel extinction Euhedral Shapes 
Bubble wall texture Irregular, blocky twinning 

Basement Quartz Criteria: Basement Feldspar Criteria 
Bubble tracks and trails Thin, parallel, bent twins 
Fluid inclusions No zoning 
Bent lattice, sweeping extinction Grid twinning 
Rounded outlines 
Polycrystalline 

Table 5: Cntena for basement versus volcamc denved grams. 
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Q&F SE5 SE7 SE10 SE148 SE14T SE18 SE27 SE37 SE38 NW12 NW13 U81 U84 

Volcanic Quartz 15 14 16 6 14 12 14 22 22 22 27 26 31 
Metamorphic Quartz 31 29 34 47 42 38 36 27 27 27 23 21 16 
Ambiguous Quartz 3 8 17 8 7 14 10 12 11 10 9 10 11 
Volcanic Feldspar 21 25 19 17 20 17 21 27 26 28 26 26 27 
Metamorphic Feldspar 23 10 4 11 11 13 13 9 8 6 6 9 8 
Ambiguous Feldspar 7 14 10 11 6 6 6 1 6 7 9 8 7 

Table 6: Basement vs . volcanic derived monocrystalhne quartz and feldspar gram categones and counts 
data. 

Sample Grain Size 
SE5 Lower coarse sand 
SE7 Medium upper sand 
SElO Fine upper sand 
SEl4B Course lower sand 
SEl4T Course lower sand 
SEl8 Medium lower sand 
SE27 Medium upper sand 
SE37 Medium lower sand 
SE 38 Medium upper sand 
NWl2 Medium lower sand 
NWl3 Medium l!P~er sand 
NWl4 Fine lower sand 
UBI Medium upper sand 
UB4 Medium upper sand 

Table 7: Grain size of samples in Y2 Wentworth grades. 
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